Lanchester-type models of warfare and optimal control |
| |
Authors: | James G. Taylor |
| |
Abstract: | The optimization of the dynamics of combat (optimal distribution of fire over enemy target types) is studied through a sequence of idealized models by use of the mathematical theory of optimal control. The models are for combat over a period of time described by Lanchester-type equations with a choice of tactics available to one side and subject to change with time. The structure of optimal fire distribution policies is discussed with reference to the influence of combatant objectives, termination conditions of the conflict, type of attrition process, and variable attrition-rate coefficients. Implications for intelligence, command and control systems, and human decision making are pointed out. The use of such optimal control models for guiding extensions to differential games is discussed. |
| |
Keywords: | |
|
|