首页 | 本学科首页   官方微博 | 高级检索  
     

遥测参数数据载荷状态判别集成学习方法
引用本文:李虎,郭国航,胡钛,杨甲森,董振兴. 遥测参数数据载荷状态判别集成学习方法[J]. 国防科技大学学报, 2021, 43(6): 33-40
作者姓名:李虎  郭国航  胡钛  杨甲森  董振兴
作者单位:中国科学院国家空间科学中心空间科学卫星运控部,北京 100190;中国科学院大学,北京100049;中国科学院国家空间科学中心空间科学卫星运控部,北京 100190;中国科学院国家空间科学中心复杂航天系统电子信息技术重点实验室,北京 100190
基金项目:中国科学院空间科学战略性先导专项资助项目(XDA04080201)
摘    要:针对载荷单机设备遥测参数维度高、数据量大、存在类别不平衡、无法直观判别单机设备运行情况等问题,考虑到航天任务对可解释性的要求,提出一种基于信息增益参数特征选择和集成学习方法的载荷单机状态快速识别方法。采用统计量性质和信息增益子集搜索方法对遥测数据进行特征筛选降维,通过集成学习模型算法实现载荷单机设备状态的自适应识别分类。所提方法将信息增益的参数分类信息量评价准则和集成学习拟合能力强、类别不平衡下准确率高和抗噪能力强等优点相结合,兼顾模型特征和结果的可解释性,提供了重点参数发现功能。采用科学卫星任务真实载荷遥测参数数据对该方法进行了验证,整体识别准确率高于90%,少数样本亦可准确识别,整体效果可达到在轨任务要求,证明了所提方法的有效性和实用性。

关 键 词:有效载荷  状态判别  集成学习  信息增益  梯度提升决策树  科学卫星
收稿时间:2020-04-29

Ensemble learning for state recognition of payload from telemetry data
LI Hu,GUO Guohang,HU Tai,YANG Jiasen,DONG Zhenxing. Ensemble learning for state recognition of payload from telemetry data[J]. Journal of National University of Defense Technology, 2021, 43(6): 33-40
Authors:LI Hu  GUO Guohang  HU Tai  YANG Jiasen  DONG Zhenxing
Affiliation:Laboratory of Scientific Satellite Mission Operation, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;University of Chinese Academy of Sciences, Beijing 100049, China;Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China
Abstract:In order to deal with various complex telemetry problems, such as high dimensionality, huge volume, unbalanced categories and failure to intuitively make sense about states of payload, and considering the requirement of interpretability in space mission, a general method for fast identification of payload based on information gain and integrated learning method was proposed. Sample statistics and information gain was used to select features and reduce the dimension of the telemetry data; meanwhile, the integrated learning algorithm was used to complete the adaptive recognition and classification about payload states. The proposed method combined the advantages of the parameter classification information evaluation criteria of the information gain and strong modeling, high accuracy and strong anti-noise ability under unbalanced category samples. Furthermore, the model had to possess the property of being explanatory and able to find the key parameters. The method was verified by experiments using actual mission data, which was tested using the payload telemetry data on operational scientific satellite mission. Following that, an state-of-art result, of which the overall recognition accuracy is higher than 90 percent and a few samples can also be identified, covered mission requirement in all and proved the effectiveness and practicability.
Keywords:payload   state recognition   ensemble learning   information gain   gradient boosting decision tree   scientific satellite
本文献已被 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号