首页 | 本学科首页   官方微博 | 高级检索  
     

多尺度PCA-HOG遥感异源图像匹配算法
引用本文:韩松来,王钰婕,王星,罗世彬,董晶. 多尺度PCA-HOG遥感异源图像匹配算法[J]. 国防科技大学学报, 2022, 44(1): 146-155. DOI: 10.11887/j.cn.202201021
作者姓名:韩松来  王钰婕  王星  罗世彬  董晶
作者单位:中南大学 航空航天学院, 湖南 长沙 410083;复杂系统控制与智能协同技术重点实验室, 北京 100074;国防科技大学 空天科学学院, 湖南 长沙 410073
基金项目:国家自然科学基金资助项目(61802423);湖南省自然科学基金资助项目(2020JJ5663)
摘    要:针对遥感异源图像匹配中非线性灰度畸变和强噪声干扰问题,提出一种基于主成分分析(Principal Components Analysis,PCA)和方向梯度直方图(Histogram of Oriented Gradients,HOG)的遥感异源图像匹配算法.该算法利用HOG提取图像间的几何结构共性特征,能有效克服异源...

关 键 词:遥感图像  异源图像匹配  主成分分析  方向梯度直方图  结构特征描述
收稿时间:2020-07-07

Remote sensing multi-modal image matching algorithm based onmulti-scale PCA-HOG
HAN Songlai,WANG Yujie,WANG Xing,LUO Shibin,DONG Jing. Remote sensing multi-modal image matching algorithm based onmulti-scale PCA-HOG[J]. Journal of National University of Defense Technology, 2022, 44(1): 146-155. DOI: 10.11887/j.cn.202201021
Authors:HAN Songlai  WANG Yujie  WANG Xing  LUO Shibin  DONG Jing
Affiliation:School of Aeronautics and Astronautics, Central South University, Changsha 410083, China;Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory, Beijing 100074, China; College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract:To solve the problem of non-linear gray level distortion and strong noise interference in remote sensing multi-modal image matching, a remote sensing multi-modal image matching algorithm based on PCA (principal components analysis) and HOG (histogram of oriented gradients) was proposed. This algorithm uses HOG to extract the common features of geometric structure between images, which can effectively overcome the problem of nonlinear grayscale distortion of multi-modal images. Besides, a fast multi-scale PCA algorithm was proposed to enhance the local gradient direction in HOG, so that it can accurately extract the structural features of the image under the condition of strong noise interference. In order to improve the calculation speed of the algorithm, the integrated image method was used to reduce the computational complexity of the feature extraction process, and the fast Fourier transform was used to achieve a highly efficient matching search. The experiment used a variety of remote sensing multi-modal images (including visible light images, synthetic aperture radar images, and infrared images) to verify the matching algorithm. The results show that, compared with existing algorithms, the proposed algorithm significantly improves the matching performance.
Keywords:
本文献已被 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号