Abstract: | The M/G/1 queue with repeated attempts is considered. A customer who finds the server busy, leaves the service area and joins a pool of unsatisfied customers. Each customer in the pool repeats his demand after a random amount of time until he finds the server free. We focus on the busy period L of the M/G/1$ retrial queue. The structure of the busy period and its analysis in terms of Laplace transforms have been discussed by several authors. However, this solution has serious limitations in practice. For instance, we cannot compute the first moments of L by direct differentiation. This paper complements the existing work and provides a direct method of calculation for the second moment of L. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 115–127, 2000 |