首页 | 本学科首页   官方微博 | 高级检索  
     

面向人机交互的运动想象脑电信号感知算法研究
引用本文:王康,翟弟华,夏元清. 面向人机交互的运动想象脑电信号感知算法研究[J]. 无人系统技术, 2020, 0(1): 31-37
作者姓名:王康  翟弟华  夏元清
作者单位:北京理工大学自动化学院
基金项目:国家自然科学基金(61803033)。
摘    要:脑电信号的特征提取与分类识别是脑机交互领域的核心问题。针对运动想象脑电信号的多分类问题,以更好利用包含有用信息的脑电信号频带为目的,提出了基于小波包变换(WPD)和一对多共空间模式(CSP)的特征提取算法。首先使用WPD算法将原始脑电信号分解成一系列子频带,筛选与运动想象活动相关的子频带。然后使用一对多CSP算法进行特征提取。最后对各子频带的特征进行组合并使用BP神经网络进行分类。算法的有效性通过BCI竞赛的基准数据集进行了测试,相交于竞赛结果有了明显提升。

关 键 词:脑机接口  人机交互  运动想象  小波包分解  共空间模式  神经网络

Research on Perceptual Algorithm of Motor Imagery EEG for Human-Computer Interaction
WANG Kang,ZHAI Dihua,XIA Yuanqing. Research on Perceptual Algorithm of Motor Imagery EEG for Human-Computer Interaction[J]. Unmanned Systems Technology, 2020, 0(1): 31-37
Authors:WANG Kang  ZHAI Dihua  XIA Yuanqing
Affiliation:(School of Automation,Beijing Institute of Technology,Beijing 100081,China)
Abstract:The feature extraction and classification of EEG signals are the core issues in the field of brain computer interaction.To make full use of the EEG frequency bands containing useful information,a feature extraction algorithm based on wavelet packet transform(WPD)and one vs rest common space pattern(CSP)is proposed.Firstly,WPD algorithm is used to decompose the original EEG signal into a series of sub-bands,and based on this the sub-bands related to the activity of motion imagination are screened out.Then one vs rest CSP algorithm is used to extract EEG features.Finally,the characteristics of each sub-band are combined and classified by BP neural network.The validity of the algorithm is tested by the benchmark data set of BCI competition,and it is shown that the result is obviously improved in comparison with the competition result.
Keywords:Brain Computer Interface  Human Computer Interaction  Motor Imagery  Wavelet Packet Decomposition  Common Spatial Patterns  Neural Network
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号