首页 | 本学科首页   官方微博 | 高级检索  
     

面向多目标跟踪的PHD滤波多传感器数据融合算法
引用本文:周治利,薛安克,申屠晗,彭冬亮. 面向多目标跟踪的PHD滤波多传感器数据融合算法[J]. 火力与指挥控制, 2017, 42(8). DOI: 10.3969/j.issn.1002-0640.2017.08.009
作者姓名:周治利  薛安克  申屠晗  彭冬亮
作者单位:杭州电子科技大学通信信息传输与融合技术国防重点学科实验室,杭州,310018
基金项目:国家"973"项目,国家自然科学基金资助项目
摘    要:针对密集杂波环境下单传感器应用高斯混合PHD算法进行多目标跟踪时性能下降的问题,提出一种面向多目标跟踪的PHD滤波多传感器数据融合算法。首先构建了基于高斯混合PHD滤波的多传感器数据融合系统框架,各传感器利用高斯混合PHD滤波算法进行局部状态估计,然后对各传感器的状态估计结果进行关联度计算,最后通过构建自适应混合参数,引入协方差交叉算法对关联状态进行融合。仿真实验表明,与单传感器高斯混合PHD多目标跟踪算法相比,所提算法有效提高了目标数量和状态的估计精度。

关 键 词:多传感器多目标跟踪  高斯混合PHD滤波  数据融合  协方差交叉

Algorithm of Multi-sensor Data Fusion of PHD Filtering for Multi-target Tracking
ZHOU Zhi-li,XUE An-ke,SHEN Tu-han,PENG Dong-liang. Algorithm of Multi-sensor Data Fusion of PHD Filtering for Multi-target Tracking[J]. Fire Control & Command Control, 2017, 42(8). DOI: 10.3969/j.issn.1002-0640.2017.08.009
Authors:ZHOU Zhi-li  XUE An-ke  SHEN Tu-han  PENG Dong-liang
Abstract:For the problem of tracking performance degradation of the single sensor in the dense clutter environment using the Gaussian mixture PHD algorithm,a multi-sensor data fusion algorithm for multi-target tracking based on PHD filters is proposed. First,a multi-sensor data fusion framework based on the Gaussian mixture PHD filters is constructed . Then,each sensor processes local state is estimated by a Gaussian mixture PHD filter algorithm.After that,calculatethe correlated values of the statesfrommultiple sensors is calculated.Finally,the associated states is fused through adopting a covariance intersection algorithm with an adaptive parameter modification. Simulation results show that, compared to the single sensor Gaussian Mixture PHD filter,the proposed algorithm can effectively improve the estimation accuracy of the target number and state.
Keywords:multi-sensor multi-target tracking  gaussian mixture PHD  data fusion  covariance intersection
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号