首页 | 本学科首页   官方微博 | 高级检索  
     

小子样统计理论在装备状态检测中的应用
引用本文:乔新勇,刘建敏,张小明. 小子样统计理论在装备状态检测中的应用[J]. 装甲兵工程学院学报, 2009, 23(2): 41-43,87
作者姓名:乔新勇  刘建敏  张小明
作者单位:装甲兵工程学院,机械工程系,北京,100072
摘    要:在进行小子样条件下的装备状态检测评估时,由于采用传统统计方法对样本数据进行处理的置信度不高,统计估计时风险较大,因而在进行装备状态检测时,采用了Bayes Bootstrap方法对小子样试验数据进行了模拟统计,提高了数据处理精度,获得了状态特征的概率分布和在95%置信度下的故障判别域,实现了装甲车辆发动机故障的诊断识别。

关 键 词:Bayes  Bootstrap  小子样统计  状态检测  特征分析  概率分布

Application of Small Sample Statistic Theory in Measuring the Equipment's State
QIAO Xin-yong,LIU Jian-min,ZHANG Xiao-ming. Application of Small Sample Statistic Theory in Measuring the Equipment's State[J]. Journal of Armored Force Engineering Institute, 2009, 23(2): 41-43,87
Authors:QIAO Xin-yong  LIU Jian-min  ZHANG Xiao-ming
Affiliation:(Department of Mechanical Engineering, Academy of Armored Force Engineering, Beijing, 100072, China)
Abstract:Measuring the equipment's state in small sample case has low degree of reliability and higher risks in statistical estimation with traditional statistic methods. This paper uses Bayes Bootstrap method in diagnosing the equipment fault to process the measured data in small sample case and thus improves the estimation precision, obtains the probability distribution of state characteristics and the data range in 95% degree of reliability. In this way, diagnosing and recognition are realized for the engine fault of armored vehicles.
Keywords:Bayes Bootstrap
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号