首页 | 本学科首页   官方微博 | 高级检索  
     

多机器人最大熵博弈协同定位算法
引用本文:华承昊,窦丽华,方浩. 多机器人最大熵博弈协同定位算法[J]. 国防科技大学学报, 2014, 36(2): 192-198
作者姓名:华承昊  窦丽华  方浩
作者单位:北京理工大学自动化学院,北京理工大学自动化学院,北京理工大学自动化学院
基金项目:北京市教育委员会共建项目专项资助(XK100070532)
摘    要:研究了多机器人观测到同一目标时的协同定位问题。建立了各个机器人相对观测一致程度的数学描述模型,进而提出用基于极大熵准则的最大熵博弈获取使相对观测一致程度最优的协同定位方式。针对博弈结果的多样性,相应地改变观测方程的雅克比矩阵,推导了可适应多机器人各种博弈结果的扩展Kalman滤波协同定位算法。仿真实验表明,方法可实现机器人团队在协同定位时有选择、更高效地共享相互间的观测信息;在保证协同定位精度提高的同时有效地消除了多机器人相对观测信息间的冲突。

关 键 词:多机器人  最大熵博弈  一致相对观测  协同定位  扩展Kalman滤波算法
收稿时间:2013-11-08

A new cooperative localization algorithm based on maximum entropy gaming
HUA Chenghao,DOU Lihu,FANG Hao. A new cooperative localization algorithm based on maximum entropy gaming[J]. Journal of National University of Defense Technology, 2014, 36(2): 192-198
Authors:HUA Chenghao  DOU Lihu  FANG Hao
Affiliation:HUA Chenghao;DOU Lihua;FANG Hao;School of Automation,Beijing Institute of Technology;Key Laboratory of Intelligent Control and Decision of Complex System,Beijing Institute of Technology;
Abstract:This paper focuses on the problem of cooperative localization when an object is detected by robots simultaneously. As each robot has its own relative observation about the object, a mathematical model for comparing the consistency of these relative observations is presented. With that method, we propose a new cooperative localization algorithm based on maximum entropy gaming and Extended Kalman filter. As the gaming results are different, the Extended Kalman filter equations that can match any gaming result have been derived. Several simulation results showing that the proposed algorithm improves localization performance while avoids the relative observations conflict problem in cooperative localization.
Keywords:multi-robot   Maximum entropy gaming   consistent relative observations   cooperative localization   EKF algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号