首页 | 本学科首页   官方微博 | 高级检索  
     

无监督特征学习的人体活动识别
引用本文:史殿习,李勇谋,丁博. 无监督特征学习的人体活动识别[J]. 国防科技大学学报, 2015, 37(5): 128-134
作者姓名:史殿习  李勇谋  丁博
作者单位:国防科学技术大学计算机学院,国防科学技术大学计算机学院,国防科学技术大学计算机学院
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:针对人的局限性可能会导致在提取特征中丢失重要信息,从而影响最终的识别效果问题,提出无监督特征学习技术的惯性传感器特征提取方法。其核心思想是使用无监督特征学习方法学习多个特征映射,再将所有特征映射拼接起来形成最终的特征计算方法。其优点是不会造成重要信息的损失,而且可以显著减少所使用的无监督特征学习模型的规模。为了验证所提出的特征提取方法在活动识别中的有效性,运用一个公开的活动识别数据集,使用三种常用无监督模型进行特征提取,并使用支持向量机进行活动识别。实验结果表明,特征提取方法取得了良好的效果,与其他方法相比具有一定的优势。

关 键 词:人体活动识别  无监督特征学习  智能手机  传感器
收稿时间:2015-05-03

Unsupervised feature learning for human activity recognition
SHI Dianxi,LI Yongmou and DING Bo. Unsupervised feature learning for human activity recognition[J]. Journal of National University of Defense Technology, 2015, 37(5): 128-134
Authors:SHI Dianxi  LI Yongmou  DING Bo
Abstract:Human activity recognition using smartphone inertial sensors is currently an important research direction in the field of pervasive computing. Feature representation has a significant impact on human activity recognition. While the common used features, including time domain features and frequency domain features, heavily rely on the specific domain knowledge and are designed by hand, which may cause the loss of important information, thus affecting the classification results. To solve these problems, this paper proposed a feature extraction method based on unsupervised feature learning techniques. Firstly, we use unsupervised feature learning method to learn multiple feature maps, then concatenate them together. This method can avoid the loss of important information, and also can significantly reduce the scale of unsupervised feature learning model used. To evaluate the proposed method, we perform experiments on a public human activity recognition dataset, using three commonly used unsupervised feature learning models, and finally using support vector machines to classify activities. The results show that the proposed feature extraction method achieves good results, and has certain advantages compared with other methods.
Keywords:human activity recognition   unsupervised feature learning, smartphone, sensors
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号