首页 | 本学科首页   官方微博 | 高级检索  
     

基于流水线图像处理结构的多层模板相关神经元网络
引用本文:安向京,常文森. 基于流水线图像处理结构的多层模板相关神经元网络[J]. 国防科技大学学报, 1999, 21(3): 103-107
作者姓名:安向京  常文森
作者单位:国防科技大学自动控制系
摘    要:在自主地面车辆中,视觉系统的重要作用之一是根据路标来定位。本文提出了一种便于流水线图像处理结构实现的多层模板相关神经元网络(MTCNN)。文中给出了MTCNN的基本结构及训练算法,并且将其与经典的多层前馈神经元网络(MLFNN)进行了比较。仿真结果表明,本文提出的算法结构在多层前馈神经元网络的分类能力与采用通用图像处理硬件的可实现性之间,取得了良好的折衷。

关 键 词:模板匹配,神经元网络,流水线图像处理器,路标
收稿时间:1998-12-25

Multi-layer Template Correlation Neural Network Based on Pipelined Image Processing Structure
An Xiangjing and Chang Wensen. Multi-layer Template Correlation Neural Network Based on Pipelined Image Processing Structure[J]. Journal of National University of Defense Technology, 1999, 21(3): 103-107
Authors:An Xiangjing and Chang Wensen
Affiliation:Department of Automatic Control, NUDT, Changsha, 410073;Department of Automatic Control, NUDT, Changsha, 410073
Abstract:It is one of the important tasks of the vision system of an autonomous land vehicle (ALV) to locate itself by lane mark. In this paper, a multi layer template correlation neural network (MTCNN)based on the pipelined image processing structure is proposed for the recognition of lane mark. A structure of the MTCNN and the training algorithm are presented. In addition, a comparison between MTCNN and MLFNN is introduced. The results of simulation manifest that the proposed MTCNN is very efficient for the task such as recognition of lane mark that is based on the pipelined image processing structure.
Keywords:template match   neural network   pipelined image processor   lane mark.
本文献已被 CNKI 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号