首页 | 本学科首页   官方微博 | 高级检索  
     

纹理影像特征选择及K-means聚类优化方法
引用本文:王明威,万幼川,高贤君,叶志伟. 纹理影像特征选择及K-means聚类优化方法[J]. 国防科技大学学报, 2017, 39(6): 152-159
作者姓名:王明威  万幼川  高贤君  叶志伟
作者单位:1. 武汉大学 遥感信息工程学院, 湖北 武汉 430079,1. 武汉大学 遥感信息工程学院, 湖北 武汉 430079,2. 长江大学 地球科学学院, 湖北 武汉 430100,3. 湖北工业大学 计算机学院, 湖北 武汉 430068
基金项目:国家科技支撑计划(2014BAL05B07);国家自然科学基金(61301278);长江大学青年基金项目(2016cqn04)
摘    要:Gabor变换和K-means算法是最为常用的纹理分析方法。然而,采用Gabor变换得到的纹理特征向量具有较高的维数,影响算法的运行效率;K-means算法也易受初始类中心的影响而导致分类精度下降。因此,通过Relief算法对采用Gabor变换所提取的纹理特征进行选择,得到合适的纹理特征子集。进一步采用差分进化算法,对K-means算法的聚类中心进行优化从而提高纹理识别精度和效率。实验结果表明:提出的方法所需用到的纹理特征向量的维数相对于原始特征集有大幅降低,较之基本的K-means算法,纹理识别的精度也有较明显的提高。

关 键 词:纹理识别;Gabor变换;K-means算法;Relief算法;差分进化算法
收稿时间:2016-09-12
修稿时间:2017-10-01

Texture Image Feature Selection and Optimization by Using K-means Clustering
WANG Mingwei,WAN Youchuan,GAO Xianjun and YE Zhiwei. Texture Image Feature Selection and Optimization by Using K-means Clustering[J]. Journal of National University of Defense Technology, 2017, 39(6): 152-159
Authors:WANG Mingwei  WAN Youchuan  GAO Xianjun  YE Zhiwei
Affiliation:1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China,1. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, China,2. School of Geoscience, Yangtze University, Wuhan 430100, China and 3. School of Computer Science, Hubei University of Technology, Wuhan 430068, China
Abstract:Gabor transform and K-means algorithm are two commonly used texture analysis methods. However, the texture feature vector has a high dimension by using Gabor transform, which will influence the operating efficiency. Meanwhile, K-means algorithm is affected by the initial clustering centers, and it may lead to the decrease of classification accuracy. Although, some optimization algorithms like genetic algorithm and particle swarm optimization algorithm could improve the performance of K-means algorithm to some extent, the optimization effect is difficult to guarantee as the increase of dimension. Hence, Relief algorithm is applied to make a feature selection for Gabor texture feature, and obtain a suitable texture feature sunset. Furthermore, differential evolution algorithm is used to optimize the clustering center of K-means algorithm, and enhance the accuracy and efficiency of texture recognition. Experimental results demonstrate that the dimension of texture feature vector by using the proposed method is obviously lower than that by using the original feature set, and the classification recognition is also apparently improved than the basic K-means algorithm.
Keywords:Texture recognition   Gabor transform   K-means algorithm   Relief algorithm   Differential evolution algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号