首页 | 本学科首页   官方微博 | 高级检索  
     

时间跨度对GPS坐标序列噪声模型及速度估计影响分析
引用本文:贺小星,花向红,鲁铁定,余科根,宣伟. 时间跨度对GPS坐标序列噪声模型及速度估计影响分析[J]. 国防科技大学学报, 2017, 39(6): 12-18
作者姓名:贺小星  花向红  鲁铁定  余科根  宣伟
作者单位:武汉大学测绘学院,武汉大学测绘学院
基金项目:国家自然科学基金资助项目(41674005,41464001);江西省数字国土重点实验室开放研究基金资助项目(DLLJ201701),江西省教育厅科学技术研究项目(GJJ150523)。
摘    要:选取全球范围内72个基准站的坐标序列,采用改进的赤池信息量准则、贝叶斯信息量准则对不同噪声模型组合进行噪声分析,得到基准站坐标序列的最优噪声模型及速度参数,探讨时间序列跨度对噪声模型及速度估计的影响。结果表明,基准站坐标序列噪声模型不能由单一的噪声模型表述,其呈现出多样性特征,主要表现为幂律噪声、高斯马尔科夫噪声、闪烁噪声+白噪声特征,且三坐标分量表现出不同的噪声特性;随着时间跨度的增加,坐标时间序列的最优噪声模型、GPS站速度及其不确定度逐渐由发散趋于收敛,随机游走噪声模型的比重有所增加。结果表明10 a以上的时间跨度是较为理想的噪声模型估计尺度。

关 键 词:时间序列分析;噪声模型估计;速度不确定性;赤池信息量准则;贝叶斯信息量准则
收稿时间:2016-08-05
修稿时间:2017-04-20

Investigation of time span on GPS time series noise model and velocity estimation
HE Xiaoxing,HUA Xianghong,LU Tieding,YU Kegen and XUAN Wei. Investigation of time span on GPS time series noise model and velocity estimation[J]. Journal of National University of Defense Technology, 2017, 39(6): 12-18
Authors:HE Xiaoxing  HUA Xianghong  LU Tieding  YU Kegen  XUAN Wei
Abstract:72 IGS core stations range from 7 to 20 years long span were selected to make perform analysis on GPS noise model and uncertainties of the velocity. An improved AIC / BIC model estimation criteria was developed to evaluate different combinations of noise model, to establish the best noise model of GPS time series and gain the aureate velocity parameters. Results show that the noise model of GPS time series cannot be described as simple noise, tend to showing diversity, and can be best described by PL, GGM, FN+WN model, the ENU components exhibit different noise characteristics. The span of coordinate time series affects the determination of an optimal noise model. As the time span increases, the noise model tends to be convergent and the velocity uncertainty becomes steady. It is proposed to use time series longer than 10 years to reduce the effect of noise on velocity and its uncertainty estimation. Besides, the proportion of random walk noise is proved to increase as time span increases, indicating that it is difficult to detect random walk noise with short time series.
Keywords:Time series analysis   noise model estimation   velocity uncertainty   Akaike Information Criteria   Bayesian Information Criteria.
本文献已被 CNKI 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号