Abstract: | This paper is concerned with estimating p = P(X1 < Y …, Xn < Y) or q =P (X < Y1, …, X < Yn) where the X's and Y's are all independent random variables. Applications to estimation of the reliability p from stress-strength relationships are considered where a component is subject to several stresses X1, X2, …, XN whereas its strength, Y, is a single random variable. Similarly, the reliability q is of interest where a component is made of several parts all with their individual strengths Y1, Y2 …, YN and a single stress X is applied to the component. When the X's and Y's are independent and normal, maximum likelihood estimates of p and q have been obtained. For the case N = 2 and in some special cases, minimum variance unbiased estimates have been given. When the Y's are all exponential and the X is normal with known variance, but unknown mean (or uniform between 0 and θ, θ being unknown) the minimum variance unbiased estimate of q is established in this paper. |