首页 | 本学科首页   官方微博 | 高级检索  
     

基于乘法分解弹塑性的有限元平衡方程及简化
引用本文:朱有利,徐滨士,马世宁. 基于乘法分解弹塑性的有限元平衡方程及简化[J]. 装甲兵工程学院学报, 1997, 0(2)
作者姓名:朱有利  徐滨士  马世宁
作者单位:全军装备维修表面工程研究中心!北京100072
摘    要:主要研究了乘法分解弹塑性在大变形有限元程序中的实现.首先建立了纠正的拉格朗日描述下的平衡方程.并导出了其一致线性化形式,然后以中间构形弹性对数应变张量及与其功共轭的应力张量为共轭应力应变度量代入平衡方程对其进行简化与对称化处理以形成便于程序实现的Jaco-bian矩阵.采用所建立的有限元公式对圆柱形试件的单向拉伸过程进行了数值模似.

关 键 词:有限单元法  中间构形  平衡方程

Multipliative Decomposition Elasto-Plasticity Based Finite Element Equation and its Simplification
Zhu Youli Xu Binshi Ma Shining. Multipliative Decomposition Elasto-Plasticity Based Finite Element Equation and its Simplification[J]. Journal of Armored Force Engineering Institute, 1997, 0(2)
Authors:Zhu Youli Xu Binshi Ma Shining
Affiliation:Zhu Youli Xu Binshi Ma Shining
Abstract:This paper discusses the realization of multiplicative decomposition elasto-plasticity in anamorphosis finite element equation. An equilibrium equation described by updated Lagrangian is set up first and its consistently linearized form is derived. Then taking the elastic logarithm strain of the intermediate configuration and its conjugate stress tensor as conjugate stress strain measures, this paper introduces these measures into the equibibrium equation to get them simplified and symmetricalized so as to form the Jacobian matrix which is easy for programming. And numerical simulation of a cylindrical bar under uniaxial extension is carried out by using the finite element formulations established.
Keywords:Finite element method  intermediate configuration  equibibrium equation
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号