首页
|
本学科首页
官方微博
|
高级检索
全部学科
医药、卫生
生物科学
工业技术
交通运输
航空、航天
环境科学、安全科学
自然科学总论
数理科学和化学
天文学、地球科学
农业科学
哲学、宗教
社会科学总论
政治、法律
军事
经济
历史、地理
语言、文字
文学
艺术
文化、科学、教育、体育
马列毛邓
全部专业
中文标题
英文标题
中文关键词
英文关键词
中文摘要
英文摘要
作者中文名
作者英文名
单位中文名
单位英文名
基金中文名
基金英文名
杂志中文名
杂志英文名
栏目中文名
栏目英文名
DOI
责任编辑
分类号
杂志ISSN号
基于强化学习的一对多雷达干扰资源分配策略研究
作者姓名:
尚熙
杨革文
戴少怀
蒋伊琳
作者单位:
1. 哈尔滨工程大学信息与通信工程学院;2. 上海机电工程研究所
摘 要:
针对干扰机一对多情形下的干扰突防问题,提出了一种基于强化学习的一对多干扰情形下的干扰资源分配方法,引入干扰辐射能量比和突防距离比作为评价指标,并对DQN(deep Q network)和Dueling-DQN算法引入动态调整的奖励值以增强算法的收敛能力。结合一对多干扰突防场景,对两种算法进行了验证,实验结果验证了两种算法的可行性及差异性,实现了对于干扰资源在干扰功率、时长、干扰样式及干扰雷达选取的资源分配能力,满足了一对多情形下的干扰资源实时、动态的分配需求。
关 键 词:
干扰资源分配
强化学习
干扰辐射能量
最大突防距离
动作分配
设为首页
|
免责声明
|
关于勤云
|
加入收藏
Copyright
©
北京勤云科技发展有限公司
京ICP备09084417号