首页 | 本学科首页   官方微博 | 高级检索  
     

基于科学计量的机器学习技术发展评估分析
引用本文:梁江海,杨 筱,刘书雷,吴 集. 基于科学计量的机器学习技术发展评估分析[J]. 国防科技, 2020, 41(5): 41-45
作者姓名:梁江海  杨 筱  刘书雷  吴 集
作者单位:国防科技大学前沿交叉学科学院
基金项目:湖南省智库课题(17ZWB09)
摘    要:机器学习是通过数据训练使机器获取新的知识和技能的计算机技术,是人工智能技术的核心和前沿领域之一。本文以Web of Science?核心合集收录的机器学习领域相关SCI论文和incoPat全球专利数据库收录的机器学习领域相关专利为数据源,运用科学计量方法对文献数据和专利数据进行时间、地域和机构分布分析,展示了机器学习领域研究实力的分布情况,并对机器学习的发展趋势进行了分析;然后利用主题聚类分析方法及可视化软件VOSviewer,挖掘出机器学习领域的关键技术、技术热点;最后对结果进行了总结分析,以期为我国机器学习发展布局提供参考和借鉴。

关 键 词:机器学习;科学计量;竞争态势;共现网络

Development analysis of machine learning technology based on scientometrics
LIANG Jianghai,YANG Xiao,LIU Shulei,WU Ji. Development analysis of machine learning technology based on scientometrics[J]. National Defense Science & Technology, 2020, 41(5): 41-45
Authors:LIANG Jianghai  YANG Xiao  LIU Shulei  WU Ji
Abstract:Machine learning, as a core and pioneering technology in artificial intelligence, is a computer technology which enables machines to acquire new knowledge and skills with data training. This paper takes the SCI papers from the Web of ScienceTM and the patents from the incoPat global patent database as data source, and utilizes scientometrics as the analysis method and visualization software as the analysis tool. The quantity, subject area distribution, research institutions are analyzed, showing the distribution of research strength in machine learning. Using the topic cluster analysis method and information visualization software VOSviewer, the key technologies and technical hotspots of machine learning are excavated, and the development trend of machine learning is predicted. Finally, the results are summarized and analyzed, providing references for the overall arrangement of machine learning development in China.
Keywords:machine learning   scientometrics   competition situation   co-occurrence network
点击此处可从《国防科技》浏览原始摘要信息
点击此处可从《国防科技》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号