首页 | 本学科首页   官方微博 | 高级检索  
     


Maximizing the ratio of two convex functions over a convex set
Authors:Harold P. Benson
Abstract:The purpose of this article is to present an algorithm for globally maximizing the ratio of two convex functions f and g over a convex set X. To our knowledge, this is the first algorithm to be proposed for globally solving this problem. The algorithm uses a branch and bound search to guarantee that a global optimal solution is found. While it does not require the functions f and g to be differentiable, it does require that subgradients of g can be calculated efficiently. The main computational effort of the algorithm involves solving a sequence of subproblems that can be solved by convex programming methods. When X is polyhedral, these subproblems can be solved by linear programming procedures. Because of these properties, the algorithm offers a potentially attractive means for globally maximizing ratios of convex functions over convex sets. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006
Keywords:global optimization  fractional programming  branch and bound  ratio of convex functions
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号