首页 | 本学科首页   官方微博 | 高级检索  
     

改进的聚类算法在入侵检测系统中的应用
作者姓名:邢瑞康  李成海
作者单位:空军工程大学防空反导学院,西安,710051;空军工程大学防空反导学院,西安,710051
摘    要:K-中心点聚类算法是几种经典的聚类算法之一。但传统的K-中心点聚类算法的效率以及稳定性较低,聚类的过程缓慢,容易陷入局部最优解,使得聚类最终结果的准确性不能得到保证。为此,提出了一种基于数据的"密度"信息有效地改进K-中心点聚类算法并应用于入侵检测模型。该算法很好地克服了传统的K-中心点聚类算法过分依赖初始中心点选择的弊端,并且用实验分别验证,以这种方法来进行数据的聚类相比于传统的K-中心点聚类算法,显著提高了数据集聚类的效果,在入侵检测系统的应用中也有效地提高了检测率和降低了误检率,具备一定的实用价值。

关 键 词:聚类算法  入侵检测  密度信息  K-中心点
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号