首页 | 本学科首页   官方微博 | 高级检索  
     

对象边框标注数据的弱监督图像语义分割
引用本文:徐树奎,周浩. 对象边框标注数据的弱监督图像语义分割[J]. 国防科技大学学报, 2020, 42(1): 187-193
作者姓名:徐树奎  周浩
作者单位:中国电子科技集团第,国防科技大学 系统工程学院, 湖南 长沙 410073
基金项目:国家自然科学基金资助项目(61671459)
摘    要:针对图像语义分割应用中像素级标注数据费时昂贵的问题,主要研究以对象边框标注数据为代表的弱监督模型下的图像语义分割方法。使用基于金字塔的密集采样全卷积网络提取图像的像素级特征,并用GrabCut算法转化对弱监督数据进行数据标记,通过将图像特征和标记数据进行联合训练,构建了基于金字塔密集采样全卷积网络的对象边框标注弱监督图像语义分割模型,并在公开数据集上进行了验证。实验结果表明,所构建的弱监督模型与DET3-Proposed模型、全矩形转化模型以及Bbox-Seg模型相比,达到了更好的分割效果。

关 键 词:图像语义分割  全卷积网络  弱监督模型  GrabCut算法
收稿时间:2018-11-01

Image semantic segmentation of weakly supervised model with bounding box annotations data
XU Shukui,ZHOU Hao. Image semantic segmentation of weakly supervised model with bounding box annotations data[J]. Journal of National University of Defense Technology, 2020, 42(1): 187-193
Authors:XU Shukui  ZHOU Hao
Affiliation:Mobile Postdoctoral Center, The and College of Systems Engineering, National University of Defense Technology, Changsha 410073, China
Abstract:For the pixel level marked data of image segmentation is time consuming and expensive, the image segmentation under the weak supervised model with bounding box annotations was studied. The high-resolution pixel features were extracted by a pyramid densely sampled fully convolution network, and then the weakly supervised data by the GrabCut algorithm was transformed. Finally, the image features and the labeled data were jointly trained. A model of weakly supervised image semantic segmentation based on fully convolution network was constructed and verified on public data set. Experiments show that the constructed weak supervised model has a better segmentation effect compared with DET3-Proposed model, expectation-maximization model and Bbox-Seg model.
Keywords:image semantic segmentation   fully convolution network   weakly supervised model   GrabCut algorithm
本文献已被 CNKI 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号