摘 要: | 生成对抗网络(GAN)在无人系统多个层次上的应用提高了其智能化、自主化水平,具有巨大的应用价值和发展潜力。对GAN在无人系统技术中的应用进行了综合评述并且进行了展望。首先介绍了GAN的基本概念、训练方式和传统GAN的模型结构,并且从模型结构的变动、目标损失的变化以及适用的领域等方面详细介绍了深度卷积生成对抗网络(DCGAN)、循环生成对抗网络(CylcleGAN)、生成对抗模仿学习(GAIL)、序列生成对抗网络(SeqGAN)等GAN的8种衍生模型。接着概述了与无人系统OODA回路相关的智能感知、智能判断、智能决策、人机交互等方向上GAN方法的实际应用。最后基于无人系统共性技术的发展趋势,对GAN在无人系统的单体智能、多体或群体智能以及人机混合智能等方向上的应用进行了展望。
|