首页 | 本学科首页   官方微博 | 高级检索  
     

分块自适应加权改进大规模概率模糊聚类
引用本文:景慎艳,刘松迪. 分块自适应加权改进大规模概率模糊聚类[J]. 火力与指挥控制, 2021, 46(12): 88-93. DOI: 10.3969/j.issn.1002-0640.2021.12.014
作者姓名:景慎艳  刘松迪
作者单位:辽宁对外经贸学院大数据研究院,辽宁大连116052;辽宁对外经贸学院大数据研究院,辽宁大连116052;吉林大学软件学院,长春130000
摘    要:为解决传统基于贝叶斯理论的概率模糊聚类(Bayesian Fuzzy Clustering,BFC)算法在处理大规模数据集聚类时的时间开销和存储代价瓶颈,提出基于数据分块的单程自适应加权BFC算法,算法在大规模数据集分块的基础上,设计了基于数据加权的改进BFC算法,用于数据分块内数据聚类,以挑选出对聚类贡献最具代表的标...

关 键 词:大规模数据集聚类  数据分块  加权概率模糊聚类  自适应数据加权  聚类信息传递

Block Adaptive Weighted Improved Large-scale Probabilistic Fuzzy Clustering
JING Shen-yan,LIU Song-di. Block Adaptive Weighted Improved Large-scale Probabilistic Fuzzy Clustering[J]. Fire Control & Command Control, 2021, 46(12): 88-93. DOI: 10.3969/j.issn.1002-0640.2021.12.014
Authors:JING Shen-yan  LIU Song-di
Abstract:
Keywords:
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号