基于改进自适应遗传算法的阵列优化 |
| |
引用本文: | 黄超,张剑云,朱家兵. 基于改进自适应遗传算法的阵列优化[J]. 火力与指挥控制, 2016, 0(3). DOI: 10.3969/j.issn.1002-0640.2016.03.032 |
| |
作者姓名: | 黄超 张剑云 朱家兵 |
| |
作者单位: | 1. 电子工程学院,合肥,230037;2. 中国电子科技集团公司第三十八研究所,合肥,230088 |
| |
基金项目: | 中国博士后基金(2014M552606);安徽省自然科学基金资助项目(1408085MF111) |
| |
摘 要: | 提出了一种改进的自适应遗传算法,对约束了阵列孔径、阵元数目和最小阵元间距的非均匀稀布阵列进行优化布阵。该算法采用实值编码,改进了适应度函数,避免了不可行解的产生。同时选取新的选择算子和改进的双重最佳保留策略,对传统自适应遗传算法的交叉、变异概率进行了动态改进。仿真结果表明,该方法能较好地抑制"早熟",增加了获取全局最优解的概率,获得了更低的峰值旁瓣电平。
|
关 键 词: | 非均匀稀布阵 改进自适应遗传算法 副瓣电平 阵列优化 |
Array Optimization Based on a Modified Adaptive Genetic Algorithm |
| |
Abstract: | A Modified Adaptive Genetic Algorithm (MAGA)is presented in this paper to optimize the element position of the non-uniform sparse array with the constraints of aperture size,element numbers and minimum element spacing. In the algorithm,real valued coding and the modified fitness function can avoid the appearance of the infeasible solution during mutation and crossover. The new selection operator and improved dual optimal reserved strategy are used in this paper. The classic adaptive probabilities of crossover and mutation are also modified. The simulation results show that the algorithm can suppress premature,increase the probability of obtaining the global optimal solution and get a lower Peak Side-Lobe Level(PSLL). |
| |
Keywords: | non-uniform sparse array MAGA PSLL array optimization |
本文献已被 CNKI 万方数据 等数据库收录! |
|