首页 | 本学科首页   官方微博 | 高级检索  
     

基于多模型组合的模拟电路故障诊断方法
引用本文:陈长兴,钟英榕,任晓岳,赵红言. 基于多模型组合的模拟电路故障诊断方法[J]. 火力与指挥控制, 2016, 0(9). DOI: 10.3969/j.issn.1002-0640.2016.09.037
作者姓名:陈长兴  钟英榕  任晓岳  赵红言
作者单位:空军工程大学,西安,710051
基金项目:陕西省自然科学基金资助项目(2014JM8344)
摘    要:针对传统模拟电路故障诊断方法识别准确率低及耗时较长的问题,提出一种基于改进的二进制粒子群优化算法(IBPSO)与隐马尔科夫模型(HMM)的综合诊断方法。该方法利用IBPSO对故障特征进行提取优化,降低故障特征维度,进一步利用HMM对提取的故障特征进行预处理,排除不可能类故障特征,提高了LSSVM的分类准确率。经过仿真结果分析验证,该方法较现有的BP神经网络诊断方法,能够在确保正确率得到提升的基础上,进一步提高故障诊断速度,具有更强的战场环境适用性。

关 键 词:模拟电路  故障诊断  粒子群  隐马尔科夫模型  最小二乘支持向量机

A Method of Analog Circuit Based on Multimodel Combination
Abstract:In view of the traditional analogy circuit fault diagnosis method with the problem that the low accuracy and the long time-consuming. This paper puts forward an integrated diagnostic method based on the improved IBPSO and the hidden Markov model (HMM). The method extracts and optimizes the fault feature and reduces the fault dimension by using IBPSO,and then uses the HMM to rule out the impossible faulty feature in LSSVM,which increase the accuracy of the classification of LSSVM. Proven by the simulation results analysis,the method,comparing with the existing BP neural network diagnosis one, improves the speed of fault diagnosis on the basis of ensuring the accuracy and has the stronger applicability of the battlefield environment.
Keywords:analog circuit  fault diagnosis  particle swarm  hidden markov model  least square support vector machin
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号