首页 | 本学科首页   官方微博 | 高级检索  
     

基于种群多样性测度的PSO算法及其应用研究
引用本文:丁伟锋,汲万峰,严建钢,王光源,孙钧正. 基于种群多样性测度的PSO算法及其应用研究[J]. 现代防御技术, 2012, 40(4): 143-149
作者姓名:丁伟锋  汲万峰  严建钢  王光源  孙钧正
作者单位:海军航空工程学院,山东烟台,264001
基金项目:海军航空工程学院军事基金资助课题
摘    要:针对基本粒子群算法(particle swarm optimization,PSO)易局部收敛的缺陷,设计了一种根据种群多样性测度动态调整惯性权重的改进粒子群算法,通过仿真测试函数与基本粒子群算法、自适应粒子群算法(adaptive particle swarm optimization,APSO)、带收缩因子的粒子群算法(contractive particle swarm optimization,CPSO)进行比较,改进的PSO算法在提高算法的综合搜索能力方面具有优越性。将改进的PSO算法运用到作战飞行器航迹规划中,并进行了仿真实验,仿真结果验证了改进算法的有效性。

关 键 词:种群多样性测度  粒子群优化  航迹规划

Particle Swarm Optimization Based on Population Diversity Measure and Its Utility
DING Wei-feng , JI Wan-feng , YAN Jian-gang , WANG Guang-yuan , SUN Jun-zheng. Particle Swarm Optimization Based on Population Diversity Measure and Its Utility[J]. Modern Defence Technology, 2012, 40(4): 143-149
Authors:DING Wei-feng    JI Wan-feng    YAN Jian-gang    WANG Guang-yuan    SUN Jun-zheng
Affiliation:(Naval Aeronautical and Astronautical University,Shandong Yantai 264001,China)
Abstract:Considering the basic particle swarm optimization’s limitation of easy partial constriction,an improved particle swarm optimization algorithm based on dynamic modulation of population diversity measure’s inertia weight is designed.Emulation and comparison with basic particle swarm optimization,adaptive particle swarm optimization,and contractive particle swarm optimization show that the improved particle swarm optimization algorithm has advantage in enhancing integrate hunting ability.The improved particle swarm optimization algorithm is applied in airborne craft’s path planning and the effectiveness of the algorithm is validated by imitation.
Keywords:population diversity measure  particle swarm optimization(PSO)  path planning
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号