首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于灰色粒子滤波算法的机动AUV航深内测方法
引用本文:李婷,赵德鑫,黄芝平,苏绍璟. 一种基于灰色粒子滤波算法的机动AUV航深内测方法[J]. 国防科技大学学报, 2013, 35(5): 185-190
作者姓名:李婷  赵德鑫  黄芝平  苏绍璟
作者单位:国防科技大学 机电工程与自动化学院,国防科技大学 机电工程与自动化学院,国防科技大学 机电工程与自动化学院,国防科技大学 机电工程与自动化学院
基金项目:国家留学基金委资助项目(No.2011611091)
摘    要:本文提出了一种将灰色预测和小波变换与标准粒子滤波相结合的灰色粒子滤波算法(GPF),并将其应用于机动AUV的航深内测。GPF针对机动AUV航深内测过程中由于AUV运动状态未知和测量噪声不断变化而导致的滤波失效问题,在粒子采样过程中结合了标准采样和灰色预测采样,保证了采样得到充分多的有效粒子。在计算粒子权重时,利用小波变换跟踪测量噪声统计特性的变化,提高了各粒子似然概率计算和权重分配的正确性。最后以外测法测得的高精度的机动AUV航深作为真实航深,对该GPF算法进行了实验对比验证,并与EKF和MMPF算法的结果作对比,实验结果表明了本文方法的有效性和实用性。

关 键 词:粒子滤波  灰色预测  小波变换  机动AUV  航深内测
收稿时间:2013-01-29

A method for self-estimating the depth of maneuvering AUV based on the grey particle filter
LI Ting,ZHAO Dexin,HUANG Zhiping and SU Shaojing. A method for self-estimating the depth of maneuvering AUV based on the grey particle filter[J]. Journal of National University of Defense Technology, 2013, 35(5): 185-190
Authors:LI Ting  ZHAO Dexin  HUANG Zhiping  SU Shaojing
Affiliation:College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073, China;College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073, China;College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073, China;College of Mechatronics Engineering and Automation, National University of Defense Technology, Changsha 410073, China
Abstract:A grey particle filter (GPF) that incorporates the grey prediction algorithm and wavelet transform into the particle filter (PF) is presented in this paper. The GPF self-estimates the depth of maneuvering autonomous underwater vehicle (AUV) using the data measured by sensors equipped in the AUV under the condition that the prior maneuvering information is unknown and the measurement noise is time-varying. To implement the proposed method, the particles are sampled by standard sampling and grey prediction to insure the particles contain enough information about the true state of the maneuvering AUV. In addition, the measurement noise covariance is modified by wavelet transform in real time. Therefore, the GPF can effectively correct the prior distribution and likelihood function of the particles and then alleviate the sample degeneracy problem which is common in the particle filter. We employ a high accuracy depth trajectory that tracking by the outside position sensor as the true depth of the maneuvering AUV, then the performance of the EKF, MMPF and GPF are evaluated through the experimental data. The results show the effectiveness and robustness of the GPF.
Keywords:particle filter   grey prediction   wavelet transform   maneuvering AUV   depth self-estimation
本文献已被 CNKI 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号