首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Natural convection effects on TNT solidification inside a shaped charge mold
Institution:1. Trakya University, Engineering Faculty, Mechanical Engineering Department, Edirne, 22030, Turkey;2. Management and Technological Innovation Agency, Brazilian Army, Rio de Janeiro, 23020-470, Brazil;3. Military Institute of Engineering, Mechanical Engineering Department, Rio de Janeiro, 22290-270, Brazil
Abstract:High Explosive Anti-Tank (HEAT) warheads and ammunitions are frequently produced by explosive casting inside an axis-symmetric mold with an inverted conical geometry in the basis. In order to prevent manufacturing defects, the solidification process must be controlled. In this study, a dimensionless solidification model has been proposed to investigate the heat transfer considering the natural convection inside the liquid explosive and the numerical simulations were performed by using COMSOL Multiphysics and Modeling Software, employing trinitrotoluene (TNT) thermophysical properties. The effect of three different boundary conditions on the top of the mold have been evaluated: convection, adiabatic and isothermal. It has been observed that solidification process was faster for convection case and slower for isothermal case, while an intermediary total solidification time value was found for adiabatic case. Moreover, liquid explosive was completely surrounded by solid explosive during the solidification process for convection case and also for adiabatic case through the end of the process. Otherwise, it was not observed for isothermal case. The natural convection effects promoted a vortex inside the liquid explosive, accelerating the heat transfer process. It has been concluded that isothermal mold top boundary condition should be preferred to prevent manufacturing defects, avoiding high thermal stress.
Keywords:Solidification  Natural convection  Explosive  Dimensionless model  Anti-Tank ammunition
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号