首页 | 本学科首页   官方微博 | 高级检索  
     

基于稀疏贝叶斯学习的扩展目标雷达关联成像*
引用本文:周小利,王宏强,程永强,秦玉亮. 基于稀疏贝叶斯学习的扩展目标雷达关联成像*[J]. 国防科技大学学报, 2017, 39(3)
作者姓名:周小利  王宏强  程永强  秦玉亮
作者单位:国防科学技术大学 电子科学与工程学院,国防科学技术大学 电子科学与工程学院,国防科学技术大学 电子科学与工程学院,国防科学技术大学 电子科学与工程学院
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:雷达关联成像不依赖于雷达与目标的相对运动,是一种高分辨凝视成像方式。传统的关联成像方法未考虑复杂扩展目标的结构信息,在高分辨成像时的应用受到限制,为此提出一种自适应结构配对稀疏贝叶斯学习方法。该算法在稀疏贝叶斯学习的框架内针对扩展目标建立一种结构配对层次化高斯先验模型,然后采用变分贝叶斯期望-最大化算法交替进行目标重构和参数优化。该算法将某一信号分量的重构与周围信号分量联系起来,并能在迭代过程中自适应地调整表征各信号分量相关性的参数。实验结果表明,该方法针对扩展目标可以有效地进行高分辨成像。

关 键 词:雷达关联成像  扩展目标  稀疏贝叶斯学习  结构配对  变分贝叶斯期望-最大化
收稿时间:2016-01-21
修稿时间:2017-02-24

Radar coincidence imaging for extended targets based on sparse Bayesian learning
Abstract:Radar coincidence imaging (RCI) is a high-resolution staring imaging technique without the limitation of relative motion between target and radar. Conventional RCI methods ignore the structure information of complex extended target, which limits its applications in high resolution imaging, thus an adaptive pattern-coupled sparse Bayesian learning (APC-SBL) algorithm is proposed. To model the extended target, a pattern-coupled hierarchical Gaussian prior model is introduced in SBL framework, and then the algorithm alternates between steps of target reconstruction and parameter optimization under the variational Bayesian expectation-maximization (VBEM) framework. Therefore, the reconstruction of each coefficient involves its immediate neighbors, and the parameter indicating the pattern relevance between the coefficient and its immediate neighbors is updated adaptively during the iterations. Experimental results demonstrate that the proposed algorithm could realize high resolution imaging effectively for extended target.
Keywords:radar coincidence imaging   extended target   sparse Bayesian learning   pattern-coupled   variational Bayesian expectation maximization
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号