首页 | 本学科首页   官方微博 | 高级检索  
     

相空间有限元方法在解二维中子输运方程中的应用
引用本文:王同权,张树发,沈永平,王尚武. 相空间有限元方法在解二维中子输运方程中的应用[J]. 国防科技大学学报, 1997, 19(6): 107-112
作者姓名:王同权  张树发  沈永平  王尚武
作者单位:国防科技大学应用物理系!长沙,410073
摘    要:本文采用相空间有限元方法求解了柱形临界多群中子输运问题。其中对于方程中的坐标变量用分片连续线性多项式作为试探函数,对于方程中的角度变量用分片连续双线性多项式作为试探函数。整个求解空间区域和角度区域分别采用三角形和矩形单元划分,然后利用迦辽金方法得到一个以网格点处角通量为未知数的线性联立代数方程组,方程组中的系数矩阵的存储采用了压缩存储技术。最后用高斯消元法解此有限元方程组,表明相空间有限元方法计算收敛性较好、计算精度高。

关 键 词:相空间有限元方法  中子输运  试探函数  迦辽金方法
收稿时间:1997-06-10

Finite Element Method Applied to the Two-Dimensional Neutron Transport Equation
Wang Tongquan,Zhang Shuf,Shen Yongping and Wang Shangwu. Finite Element Method Applied to the Two-Dimensional Neutron Transport Equation[J]. Journal of National University of Defense Technology, 1997, 19(6): 107-112
Authors:Wang Tongquan  Zhang Shuf  Shen Yongping  Wang Shangwu
Abstract:The phase-space finite element method is applied to the multigroup neutron transport equation in cylindrical critical systems. The continuous piecewise polynomial trial functions are trilinear in the space variables and bilinear in the angle variables. Elements are triangular in the spatial domain and rectangular in the angle domain- Galerkin method is used to derive a set of simultaneous algebraic equations. The coefficient matrices of the algebraic equations are compressed and stored. The resulting finite element equations are solved by gaussion elimination method. Numerical results are compared to those obtained by SN calculations. FEM was observed to yield a higher order of convergence and accuracy.
Keywords:phase-space FEM  neutron transport  trial functions  Galerkin method  
本文献已被 CNKI 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号