首页 | 本学科首页   官方微博 | 高级检索  
     

基于径向基神经网络的水下振动物体辐射噪声级别分类研究
引用本文:汤智胤,何琳. 基于径向基神经网络的水下振动物体辐射噪声级别分类研究[J]. 海军工程大学学报, 2005, 17(4): 93-96
作者姓名:汤智胤  何琳
作者单位:海军工程大学,振动与噪声研究所,湖北,武汉,430033
摘    要:运用径向基神经网络,利用水下振动物体内表面加速度信号对其辐射噪声级别进行分类,达到判断其声隐身性的目的.该方法的运算量较传统方法大大降低,极大地提高了计算速度.实例表明,该方法能较准确地对水下振动物体辐射声场声压级别进行分类,进而对其推广应用于潜艇提供了较好的依据.

关 键 词:辐射噪声  分级报警  RBF神经网络  高斯核函数
文章编号:1009-3486(2005)04-0093-04
修稿时间:2005-02-26

On classification of underwater vibrating object sound radiation level based on RBF neural network
TANG Zhi-yin,HE Lin. On classification of underwater vibrating object sound radiation level based on RBF neural network[J]. Journal of Naval University of Engineering, 2005, 17(4): 93-96
Authors:TANG Zhi-yin  HE Lin
Abstract:By the use of RBF neural network, acceleration signals on the inside surface of the underwater vibrating object are used to classify its sound radiation level in order to measure its acoustic stealth. The method has much less complexity of computation than the traditional method, and the computing speed is improved a lot. The example shows that this method has good ability of classi-(fying the) underwater vibrating object sound radiation level, and also provides a nice basis on the possibility to use this method on submarine.
Keywords:sound radiation  classifying alarm  RBF neural network  Gaussian kernel function
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号