首页 | 本学科首页   官方微博 | 高级检索  
     

面向监督学习的稀疏平滑岭回归方法
引用本文:任维雅,李国辉. 面向监督学习的稀疏平滑岭回归方法[J]. 国防科技大学学报, 2015, 37(6): 121-128
作者姓名:任维雅  李国辉
作者单位:国防科学技术大学 信息系统与管理学院,国防科学技术大学 信息系统与管理学院
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:岭回归是监督学习中的一个重要方法,被广泛用于多目标分类和识别。岭回归中一个重要的步骤是定义一个特殊的多变量标签矩阵,以实现对多类别样本的编码。通过将岭回归看作是一种基于图的监督学习方法,拓展了标签矩阵的构造方法。在岭回归的基础之上,进一步考虑投影中维度的平滑性和投影矩阵的稀疏性,提出稀疏平滑岭回归方法。对比一系列经典的监督线性分类算法,发现稀疏平滑岭回归在多个数据集上有着更好的表现。另外,实验表明新的标签矩阵构造方法不会降低原始岭回归方法的表现,同时还可以进一步提升稀疏平滑岭回归方法的性能。

关 键 词:岭回归;多分类;全局维度平滑性;监督学习;
收稿时间:2014-12-26

Sparse smooth ridge regression method for supervised learning
REN Weiya and LI Guohui. Sparse smooth ridge regression method for supervised learning[J]. Journal of National University of Defense Technology, 2015, 37(6): 121-128
Authors:REN Weiya and LI Guohui
Affiliation:College of Information System and Management, National University of Defense Technology, Changsha 410073, China and College of Information System and Management, National University of Defense Technology, Changsha 410073, China
Abstract:Ridge regression is a famous method in Supervised learning. It is wide used in multi-class classification and recognition. An important step in ridge regression is to define a special multivariate label matrix, which is used to encode multi-class samples. By regarding the label matrix as a graph based supervised learning method, we extend the methods for constructing multivariate label matrix. A new method named sparse smooth ridge regression is proposed by considering the global dimension smoothness and the sparseness of the projection matrix. Experiments on several public datasets show that the proposed algorithm performs better than a series of state-of-the-art supervised linear algorithms. Furthermore, experiments show that the proposed label matrix construction methods do not reduce the performance of the original ridge regression. Besides, the proposed label matrix construction methods can improve the performance of the proposed sparse smooth ridge regression.
Keywords:ridge regression   multi-class classification   global dimension smoothness   supervised learning
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号