首页 | 本学科首页   官方微博 | 高级检索  
     

分布式流体系结构及其编程模型与资源管理
引用本文:李鑫,杨学军,徐新海. 分布式流体系结构及其编程模型与资源管理[J]. 国防科技大学学报, 2015, 37(6): 110-115
作者姓名:李鑫  杨学军  徐新海
作者单位:国防科学技术大学计算机学院,国防科学技术大学计算机学院,国防科学技术大学计算机学院
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
摘    要:利用互联网资源提供大数据计算服务面临着资源异构性、动态性与通信长延迟等方面的挑战,现有分布式计算模型仍存在一些不足。运用流计算模型提出分布式流体系结构,包括分布式流编程模型与资源管理等,能够高效支持多种并行执行模式。在10个CPU-GPU异构结点上实现了原型系统,仿真实验验证了7个不同的测试用例。实验结果表明,与本地串行计算相比,分布式流体系结构可以平均提高39倍计算性能,具有较大的应用潜力。

关 键 词:分布式流体系结构  大数据  编程模型  分布式计算
收稿时间:2015-09-07

The Programming Model and Resource Management of Distributed Stream Architecture
LI Xin,YANG Xuejun and XU Xinhai. The Programming Model and Resource Management of Distributed Stream Architecture[J]. Journal of National University of Defense Technology, 2015, 37(6): 110-115
Authors:LI Xin  YANG Xuejun  XU Xinhai
Abstract:While providing big data computing services using Internet resources, there remains a big challenge to researchers, including heterogeneity of Internet resources, dynamics of Internet resources and long latency of the Internet communication. However, current influent distributed computing models still have some shortage. Therefore, a novel distributed stream computing model is proposed based on the traditional stream computing model, including the distributed stream programming model and resource management. They can efficiently support multiple parallel execution modes. The prototype system has been implemented on the 10 CPU-GPU heterogeneous nodes. Seven different benchmarks are used in the simulation experiment. The experimental result shows that the distributed stream architecture can achieve the speedup of at least 39x on average over the local serial computing, with significant potential for applications.
Keywords:distributed stream architecture   Big Data   programming model   distributed computing
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号