首页 | 本学科首页   官方微博 | 高级检索  
     

超音速气流中热塑性复合材料壁板的非线性热颤振特性
引用本文:高艺航,段静波,雷勇军. 超音速气流中热塑性复合材料壁板的非线性热颤振特性[J]. 国防科技大学学报, 2022, 44(2): 16-23. DOI: 10.11887/j.cn.202202003
作者姓名:高艺航  段静波  雷勇军
作者单位:国防科技大学空天科学学院,湖南长沙 410073;中国运载火箭技术研究院北京宇航系统工程研究所,北京 100076,石家庄铁道大学 工程力学系,河北 石家庄 050043,国防科技大学空天科学学院,湖南长沙 410073
基金项目:国家自然科学基金资助项目(11702325);河北省重点研发计划资助项目(213504010);民航航空器适航审定技术重点实验室开放基金资助项目(SH2020112705)
摘    要:热塑性复合材料结构在高速流场中的颤振行为是可重复使用航天器设计中需要考虑的问题.基于Mindlin厚板理论和Von-Karman大变形理论描述热塑性复合壁板结构大变形,超音速气动力采用活塞气动理论.考虑温度引起的壁板面内热应力和热塑性材料力学性能的改变.根据虚功原理和有限元法推导建立了热塑性复合材料壁板的热颤振模型,进...

关 键 词:热塑性复合壁板  非线性热颤振  超音速气流  模态耦合  极限环振荡特性
收稿时间:2020-07-31

Nonlinear thermal flutter characteristics of thermoplastic composite panels in supersonic flow
GAO Yihang,DUAN Jingbo,LEI Yongjun. Nonlinear thermal flutter characteristics of thermoplastic composite panels in supersonic flow[J]. Journal of National University of Defense Technology, 2022, 44(2): 16-23. DOI: 10.11887/j.cn.202202003
Authors:GAO Yihang  DUAN Jingbo  LEI Yongjun
Affiliation:College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China;Beijing Institute of Astronautical Systems Engineering, China Academy of Launch Vehicle Technology, Beijing 100076, China;Department of Engineering Mechanics, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
Abstract:The flutter behavior of thermoplastic composite structures in high-speed flow is a key problem in the design of reusable spacecraft. Based on the classical Mindlin thick theory, the Von-Karman larger deformation theory and the piston theory, the thermoplastic composite structure panel and its aerodynamics were described, along with the consideration of both the thermal stress and the variation of mechanical properties caused by the temperature. The aeroelastic model of the thermoplastic composite panel was established based on the principle of virtual work and the finite element method,and the V-g method and the Newmark method were used to solve the thermal flutter characteristics of the thermoplastic panel from frequency domain and time domain, respectively. After the validity and convergence of the presented method were verified, the effects of temperature on mode coupling in frequency domain, limit cycle oscillation in time-domain and stress response were investigated.The results show that the flutter dynamic pressure obtained by considering the temperature variation of thermoplastic materials will further reduce the flutter dynamic pressure of the panel, and the equivalent stress of thermoplastic panels under the limit cycle oscillation is lower than the material yield limit.
Keywords:thermoplastic composite panels   nonlinear thermal flutter   supersonic flow   mode coupling   limit cycle oscillation characteristics
本文献已被 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号