首页 | 本学科首页   官方微博 | 高级检索  
     

机动目标跟踪的非线性算法
引用本文:于国桥,张安清. 机动目标跟踪的非线性算法[J]. 火力与指挥控制, 2007, 32(6): 15-17
作者姓名:于国桥  张安清
作者单位:1. 91550部队,辽宁,大连,116023
2. 海军大连舰艇学院,辽宁,大连,116018
摘    要:卡尔曼滤波器对线性高斯滤波问题能提供最优解, 而对目标运动模型、观测方程等要求的非线性就不再适合,提出了一种机动目标自适应非线性粒子滤波算法-" 粒子滤波器"(Particle Filters PF)法, 这种方法不受线性化误差和高斯噪声假定的限制,适用于任何状态转换或测量模型, 分析比较了粒子滤波(PF)与扩展卡尔曼滤波算法(EKF) 的滤波精度、运算量等方面指标.给出了基于典型非线性模型的算法仿真, 仿真结果表明粒子滤波新方法优于EKF对机动目标跟踪.

关 键 词:机动目标跟踪  粒子滤波  序列蒙特卡洛  贝叶斯估计  机动  目标跟踪  线性算法  Maneuvering Target Tracking  Algorithm  Nonlinear  仿真结果  算法仿真  非线性模型  指标  运算量  精度  扩展卡尔曼滤波算法  粒子滤波器  比较  分析  测量模型  状态转换  高斯噪声  线性化误差
文章编号:1002-0640(2007)06-0015-03
修稿时间:2005-10-15

A Novel Nonlinear Algorithm for Maneuvering Target Tracking
YU Guo-qiao,ZHANG An-qing. A Novel Nonlinear Algorithm for Maneuvering Target Tracking[J]. Fire Control & Command Control, 2007, 32(6): 15-17
Authors:YU Guo-qiao  ZHANG An-qing
Abstract:The Kalman Filter is optimal solution to the filter problem for linear Gaussian model,but it is not suitable for nonlinear problem to maneuvering model and observation equation.In this paper, a novel nonlinear Particle Filter(PF) algorithm is proposed for maneuvering target adaptive tracking.The approach suits any model of state trans ition and observation.And it is not restricted by error of linearization and assumption of Gaussian to noise.The Particle Filters is compared with the Extended Kalman Filter(EKF) to filter precision and calculating complexity.Some simulation are performed to typical nonlinear model,the results have shown that the performance of PF is better than that of KEF for Maneuvering Target Tracking.
Keywords:Maneuvering Target Tracking  Particle Filter  sequence MonteCarlo  Bayesian estimation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号