首页 | 本学科首页   官方微博 | 高级检索  
     

高超音速化学平衡流粘性激波层数值计算
引用本文:刘执明,吴其芬. 高超音速化学平衡流粘性激波层数值计算[J]. 国防科技大学学报, 1988, 10(1): 49-56
作者姓名:刘执明  吴其芬
作者单位:国防科技大学航天技术系(刘执明),国防科技大学航天技术系(吳其芬)
摘    要:本文给出了层流化学平衡粘性激波层方程对于细长解析体的数值解。这些求解结果是通过空间步进方法得到的,并且与参考文献里的计算结果作了比较,以估价该方法的精确度。结果表明,这种控制方程完全耦合求解的方法能够给出相当精确和稳定的结果,这些结果与参考文献的计算结果相当吻合。

关 键 词:高超音速流动  粘性激波层  层流平衡气体  数值计算
收稿时间:1987-05-15

Numerical Viscous Shock Layer Solution to the Hypersonic Chemically Equilibrium Flows
Liu Zhiming and Wu Qifen. Numerical Viscous Shock Layer Solution to the Hypersonic Chemically Equilibrium Flows[J]. Journal of National University of Defense Technology, 1988, 10(1): 49-56
Authors:Liu Zhiming and Wu Qifen
Affiliation:Liu Zhiming;Wu Qifen
Abstract:The viscous shock layer numerical solutions to the hypersonic chemicallyequilibrium laminar flows are presented. These results are obtained by the spatialmarching method. The comparision with the results of reference 8 is made toassess the accuracy of the present method. This method, which fully couplesthe governing equations, gives the accurate and stable results, These resultsare comparedwell with those from reference 8. A chemical equilibrium model, whick is based on the Free-Energy-Minimumprinciple, is used. For this model, it is convenient to choose the species. Thesteepest descent method is used to make the chemical ecuilibrium model easilyimplemented.
Keywords:Viscous shock Layer  Viscous flow  Hypersonic flow  Liminar flow equilibrium air  Free-energy-minimum principle  The steepest decent method  Spatial marching method
本文献已被 CNKI 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号