首页 | 本学科首页   官方微博 | 高级检索  
     

面向计算流体力学的图形处理器资源管理
引用本文:翁跃,张献伟,张曦,卢宇彤. 面向计算流体力学的图形处理器资源管理[J]. 国防科技大学学报, 2022, 44(5): 35-44
作者姓名:翁跃  张献伟  张曦  卢宇彤
作者单位:中山大学 计算机学院, 广东 广州 510006
基金项目:国家自然科学基金资助项目(62102465);国家重点研发计划资助项目(2016YFB0200902);国家数值风洞工程资助项目(NNW2019ZT6-B18);广东省引进创新创业团队资助项目(2016ZT06D211)
摘    要:针对求解计算流体力学过程中图形处理器资源利用率低的问题,提出面向计算流体力学的图形处理器资源优化管理方案。基于计算流体力学的算法特性和同时运行任务的执行特点,设计合理的调度方案。通过动态改变不同任务的启动规模和启动时间,在减少资源竞争的同时提高图形处理器资源的有效使用。实验结果表明:本文提出的资源管理方案相比基线方法在不同任务规模下的平均加速比达到 1.64,对图形处理器的硬件资源使用也有了显著的提升。

关 键 词:计算流体力学  图形处理器  资源管理  调度
收稿时间:2022-01-13

Graphics processing unit resource management for computational fluid dynamics
WENG Yue,ZHANG Xianwei,ZHANG Xi,LU Yutong. Graphics processing unit resource management for computational fluid dynamics[J]. Journal of National University of Defense Technology, 2022, 44(5): 35-44
Authors:WENG Yue  ZHANG Xianwei  ZHANG Xi  LU Yutong
Affiliation:School of Computer Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
Abstract:Aiming at the problem of low resource utilization of GPU (graphics processing unit) in the process of solving CFD (computational fluid dynamics), a CFD-oriented GPU resource optimization management scheme was proposed. Based on the characterization of the CFD and tasks running concurrently, a reasonable scheduling scheme was designed. By dynamically changing the startup scale and time of different tasks, our method was able to reduce resource competition while improving the effective use of GPU resources. The experimental results show that compared with the baseline method, the average speedup ratio of our proposed resource management scheme reaches 1.64x speedup under different task scales, and the use of GPU hardware resources has also been significantly improved.
Keywords:computational fluid dynamics   graphics processing unit   resource management   scheduling
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号