首页 | 本学科首页   官方微博 | 高级检索  
     

混沌背景下基于神经网络的编码信号检测新方法
引用本文:刘诗华,王德石. 混沌背景下基于神经网络的编码信号检测新方法[J]. 海军工程大学学报, 2008, 20(2)
作者姓名:刘诗华  王德石
作者单位:海军工程大学,兵器工程系,武汉,430033
摘    要:提出了一种混沌背景下的编码信号检测新方法。信号检测过程包含两个步骤:混沌信号的预测和检测判决。该方法利用非线性前馈神经网络进行混沌信号模型的创建,并采用13位巴克码作为编码信号。仿真结果表明,通过该方法进行编码信号检测可以得到较高的检测概率和较低的虚警概率,整体检测性能较高,并且对于不同信噪比的信号具有较强的鲁棒性。

关 键 词:信号分类  信号检测  神经网络  混沌建模

New method of coded signals detection based on neural network in chaos
LIU Shi-hua,WANG De-shi. New method of coded signals detection based on neural network in chaos[J]. Journal of Naval University of Engineering, 2008, 20(2)
Authors:LIU Shi-hua  WANG De-shi
Abstract:The process of signal detection consists of two stages: preliminary detection of chaotic signals and detection decision making.In this way,models of chaotic signals were created in the form of non-linear feedforward neural networks,and 13-element Barker code was used as the coded signals.The experiment results show that the detection of coded signals by using this method has higher detection probability,lower false alarm probability and good performance of the whole detection.This method turns out to be very robust to signals with different SNR.
Keywords:signal classification  signal detection  neural network  chaotic modeling
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号