摘 要: | 在第Ⅲ部分提出了一种称为模型群切换算法(MGS)的变结构多模型(VSMM)估计器它是第一种通用的、可应于一大类具有混合(连续或离散)不确定性问题的VSMM估计器.在这种算法中,模型集合通过在一定数目预先确定的模型群之间的切换来实现自适应.它比固定结构MM(FSMM)估计器,包括交互多模型估计器(IMM)具有更大的潜力获得更高的费效比.本文研究了算法应用中的一些比较重要的问题,包括模型群自适应逻辑和模型群的设计.研究的结果通过一个机动目标跟踪问题的详细设计例子进行了演示.这个跟踪问题使用一个时变模型集合,每个模型由目标的加速度期望值表征.仿真结果用来证实在仔细设计和非常随机和确定的情况下,MGS算法同使用所有模型的固定结构IMM(FSIMM)估计的性能(基于更合理和完全的度量,而不是仅使用通常的rms误差)和计算复杂程度的比较.
|