首页 | 本学科首页   官方微博 | 高级检索  
     

基于SOINN增量自编码器的网络异常检测研究
作者姓名:吴署光  王宏艳  颜南江  王宇
作者单位:1. 航天工程大学航天信息学院;2. 32039部队
摘    要:针对批量学习的网络异常检测模型存在内存资源消耗大、无法在线更新的问题,利用自组织增量神经网络(self-organizing incremental neural network, SOINN)的增量学习特性,提出一种增量自编码器构建方式,将改进SOINN的输出神经元作为自动编码器的输入,使得模型在不破坏已有学习成果的基础上,具备增量更新能力。针对SOINN算法获胜神经元邻居节点学习率固定,不利于区分其与输入样本的相似性的问题,提出一种学习率自适应调整方法,来提升获胜神经元邻居节点的学习效率,使得算法输出神经元更能代表样本特性。针对反馈更新样本中正常样本纯度不高的问题,提出一种基于距离度量的样本标签筛选机制,通过计算反馈样本与神经元的距离来对正常样本进行筛选,使得反馈样本中正常样本比例更高,以此来提升模型的在线检测效果。在NSL-KDD数据集上开展了相关实验,实验证明所提方法具备增量学习能力,且改进SOINN的增量学习效果优于原始算法,有效节省了模型的运算和存储开销,通过基于距离的样本标签筛选机制,模型的在线检测能力有效提升。

关 键 词:异常检测  自组织增量神经网络  自动编码器  增量学习  在线学习
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号