首页 | 本学科首页   官方微博 | 高级检索  
     

融合神经网络与超像素的候选区域优化算法
引用本文:王春哲,安军社,姜秀杰,邢笑雪,崔天舒. 融合神经网络与超像素的候选区域优化算法[J]. 国防科技大学学报, 2021, 43(4): 145-155
作者姓名:王春哲  安军社  姜秀杰  邢笑雪  崔天舒
作者单位:中国科学院国家空间科学中心复杂航天系统电子信息技术重点实验室,北京 100190;中国科学院大学,北京 100049;中国科学院国家空间科学中心复杂航天系统电子信息技术重点实验室,北京 100190;长春大学电子信息工程学院,吉林长春 130022
基金项目:国家自然科学基金资助项目(61805021)
摘    要:为解决目标检测中候选区域召回率低的问题,提出融合神经网络与超像素的目标候选区域算法.该算法利用神经网络提取更能清楚表达目标边界的特征,并使用聚类、相似性等策略,计算每个滑动窗口所含有的边缘信息量;将待测图像使用简单线性迭代聚类算法分割成若干个超像素,并利用超像素的空间位置、完整性、相邻超像素间的对比度信息,计算各个超像...

关 键 词:计算机视觉  目标检测  候选区域  卷积神经网络  超像素
收稿时间:2019-12-18

Region proposals optimization algorithm combining neural networks and superpixels
WANG Chunzhe,AN Junshe,JIANG Xiujie,XING Xiaoxue,CUI Tianshu. Region proposals optimization algorithm combining neural networks and superpixels[J]. Journal of National University of Defense Technology, 2021, 43(4): 145-155
Authors:WANG Chunzhe  AN Junshe  JIANG Xiujie  XING Xiaoxue  CUI Tianshu
Affiliation:Key Laboratory of Electronics and Information Technology for Space Systems, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;University of Chinese Academy of Sciences, Beijing 100049, China;School of Electronic and Information Engineering, Changchun University, Changchun 130022, China
Abstract:In order to solve the low recall problem of the region proposals in object detection, the object region proposals algorithm, which combines neural networks and superpixels, was proposed. The edge features, which can be represented clearly by neural networks, were extracted from the images to be detected, and the score of edge information for per sliding window was computed by the strategy of edge clustering and the affinities between the edge groups. The several superpixels of this images were obtained by simple linear iterative clustering algorithm, and the salient object score of a superpixel was calculated using the location, integrity of this superpixel and the contrast with neighbors. The salient objects score of per sliding window was received by these saliency scores of superpixels according to the Euler distance strategy between the sliding window and these superpixels. The region proposals were determined by two components including edge information scores and salient object scores. The comparative experiments were conducted in PASCAL VOC 2007 test set, and the experiment results show that the proposed algorithm can fast generate a set of region proposal with higher localization.
Keywords:computer vision   object detection   region proposals   convolutional neural networks   superpixels
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《国防科技大学学报》浏览原始摘要信息
点击此处可从《国防科技大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号