首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
This paper presents a single-item inventory model with deterministic demand where the buyer is allowed to search for the most favorable price before deciding on the order quantity. In the beginning of each period, a sequential random sample can be taken from a known distribution and there is a fixed cost per search. The decision maker is faced with the task of deciding when to initiate and when to stop the search process, as well as determining the optimal order quantity once the search process is terminated. The objective is to minimize total expected costs while satisfying all demands on time. We demonstrate that a set of critical numbers determine the optimal stopping and ordering strategies. We present recursive expressions yielding the critical numbers, as well as the minimal expected cost from the beginning of every period to the end of the horizon.  相似文献   

2.
Technology products often experience a life‐cycle demand pattern that resembles a diffusion process, with weak demand in the beginning and the end of the life cycle and high demand intensity in between. The customer price‐sensitivity also changes over the life cycle of the product. We study the prespecified pricing decision for a product that exhibits such demand characteristics. In particular, we determine the optimal set of discrete prices and the times to switch from one price to another, when a limited number of price changes are allowed. Our study shows that the optimal prices and switching times show interesting patterns that depend on the product's demand pattern and the change in the customers' price sensitivity over the life cycle of the product. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

3.
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

4.
This paper considers the problem of computing optimal ordering policies for a product that has a life of exactly two periods when demand is random. Initially costs are charged against runouts (stockouts) and outdating (perishing). By charging outdating costs according to the expected amount of outdating one period into the future, a feasible one period model is constructed. The central theorem deals with the n-stage dynamic problem and demonstrates the appropriate cost functions are convex in the decision variable and also provides bounds on certain derivatives. The model is then generalized to include ordering and holding costs. The paper is concluded with a discussion of the infinite horizon problem.  相似文献   

5.
We study a component inventory planning problem in an assemble‐to‐order environment faced by many contract manufacturers in which both quick delivery and efficient management of component inventory are crucial for the manufacturers to achieve profitability in a highly competitive market. Extending a recent study in a similar problem setting by the same authors, we analyze an optimization model for determining the optimal component stocking decision for a contract manufacturer facing an uncertain future demand, where product price depends on the delivery times. In contrast to our earlier work, this paper considers the situation where the contract manufacturer needs to deliver the full order quantity in one single shipment. This delivery requirement is appropriate for many industries, such as the garment and toy industries, where the economies of scale in transportation is essential. We develop efficient solution procedures for solving this optimization problem. We use our model results to illustrate how the different model parameters affect the optimal solution. We also compare the results under this full‐shipment model with those from our earlier work that allows for multiple partial shipments. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

6.
Existing models for describing optimal ordering policies for perishable inventory cast the problem as a multidimensional dynamic program, the dimensionality being one less than the product lifetime in periods. An approach developed in previous work takes explicit account of outdating in the single period model. Formulas for the expected quantity of any new order which will outdate are developed for the case where the demand has a stationary Erlang distribution. A modified version of the one period model is shown to yield a reasonable approximation to the stationary optimal policy.  相似文献   

7.
This article addresses a single‐item, finite‐horizon, periodic‐review coordinated decision model on pricing and inventory control with capacity constraints and fixed ordering cost. Demands in different periods are random and independent of each other, and their distributions depend on the price in the current period. Each period's stochastic demand function is the additive demand model. Pricing and ordering decisions are made at the beginning of each period, and all shortages are backlogged. The objective is to find an optimal policy that maximizes the total expected discounted profit. We show that the profit‐to‐go function is strongly CK‐concave, and the optimal policy has an (s,S,P) ‐like structure. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

8.
We consider a periodic review model over a finite horizon for a perishable product with fixed lifetime equal to two review periods. The excess demand in a period is backlogged. The optimal replenishment and demand management (using price) decisions for such a product depend on the relative order of consumption of fresh and old units. We obtain insights on the structure of these decisions when the order of consumption is first‐in, first‐out and last‐in, first‐out. For the FIFO system, we also obtain bounds on both the optimal replenishment quantity as well as expected demand. We compare the FIFO system to two widely analyzed inventory systems that correspond to nonperishable and one‐period lifetime products to understand if demand management would modify our understanding of the relationship among the three systems. In a counterintuitive result, we find that it is more likely that bigger orders are placed in the FIFO system than for a nonperishable product when demand is managed. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

9.
This paper develops an inventory model that determines replenishment strategies for buyers facing situations in which sellers offer price‐discounting campaigns at random times as a way to drive sales or clear excess inventory. Specifically, the model deals with the inventory of a single item that is maintained to meet a constant demand over time. The item can be purchased at two different prices denoted high and low. We assume that the low price goes into effect at random points in time following an exponential distribution and lasts for a random length of time following another exponential distribution. We highlight a replenishment strategy that will lead to the lowest inventory holding and ordering costs possible. This strategy is to replenish inventory only when current levels are below a certain threshold when the low price is offered and the replenishment is to a higher order‐up‐to level than the one currently in use when inventory depletes to zero and the price is high. Our analysis provides new insight into the behavior of the optimal replenishment strategy in response to changes in the ratio of purchase prices together with changes in the ratio of the duration of a low‐price period to that of a high‐price period. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2007.  相似文献   

10.
We analyze a supply chain of a manufacturer and two retailers, a permanent retailer who always stocks the manufacturer's product and an intermittent deal‐of‐the day retailer who sells the manufacturer's product online for a short time. We find that without a deal‐of‐the‐day (DOTD) retailer, it is suboptimal for the manufacturer to offer a quantity discount while it is optimal for the retailer to offer periodic price discounts to consumers. With the addition of a DOTD retailer, it is likely to be optimal for the manufacturer to offer a quantity discount. We show that even without market expansion, i.e., no exclusive DOTD retailer consumers, opening the intermittent channel can leave the permanent retailer no worse‐off while increasing the manufacturer's profit. We identify the regular and discounted wholesale prices and the threshold quantity at which the manufacturer should give the discount. We also identify the optimal retail prices. We find that opening the intermittent channel increases the profit of the manufacturer, is likely to decrease the average retail price and to increase sales, and may increase the permanent retailer's profit. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 505–528, 2016  相似文献   

11.
We address the problem of determining optimal ordering and pricing policies in a finite‐horizon newsvendor model with unobservable lost sales. The demand distribution is price‐dependent and involves unknown parameters. We consider both the cases of perishable and nonperishable inventory. A very general class of demand functions is studied in this paper. We derive the optimal ordering and pricing policies as unique functions of the stocking factor (which is a linear transformation of the safety factor). An important expression is obtained for the marginal expected value of information. As a consequence, we show when lost sales are unobservable, with perishable inventory the optimal stocking factor is always at least as large as the one given by the single‐period model; however, if inventory is nonperishable, this result holds only under a strong condition. This expression also helps to explain why the optimal stocking factor of a period may not increase with the length of the problem. We compare this behavior with that of a full information model. We further examine the implications of the results to the special cases when demand uncertainty is described by additive and multiplicative models. For the additive case, we show that if demand is censored, the optimal policy is to order more as well as charge higher retail prices when compared to the policies in the single‐period model and the full information model. We also compare the optimal and myopic policies for the additive and multiplicative models. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

12.
We study optimal pricing for tandem queueing systems with finite buffers. The service provider dynamically quotes prices to incoming price sensitive customers to maximize the long-run average revenue. We present a Markov decision process model for the optimization problem. For systems with two stations, general-sized buffers, and two or more prices, we describe the structure of the optimal dynamic pricing policy and develop tailored policy iteration algorithms to find an optimal pricing policy. For systems with two stations but no intermediate buffer, we characterize conditions under which quoting either a high or a low price to all customers is optimal and provide an easy-to-implement algorithm to solve the problem. Numerical experiments are conducted to compare the developed algorithms with the regular policy iteration algorithm. The work also discusses possible extensions of the obtained results to both three-station systems and two-station systems with price and congestion sensitive customers using numerical analysis.  相似文献   

13.
This study presents power‐of‐two policies for a serial inventory system with constant demand rate and incremental quantity discounts at the most upstream stage. It is shown that an optimal solution is nested and follows a zero‐inventory ordering policy. To prove the effectiveness of power‐of‐two policies, a lower bound on the optimal cost is obtained. A policy that has a cost within 6% of the lower bound is developed for a fixed base planning period. For a variable base planning period, a 98% effective policy is provided. An extension is included for a system with price dependent holding costs. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2007  相似文献   

14.
We consider the problem of designing a contract to maximize the supplier's profit in a one‐supplier–one‐buyer relationship for a short‐life‐cycle product. Demand for the finished product is stochastic and price‐sensitive, and only its probability distribution is known when the supply contract is written. When the supplier has complete information on the marginal cost of the buyer, we show that several simple contracts can induce the buyer to choose order quantity that attains the single firm profit maximizing solution, resulting in the maximum possible profit for the supplier. When the marginal cost of the buyer is private information, we show that it is no longer possible to achieve the single firm solution. In this case, the optimal order quantity is always smaller while the optimal sale price of the finished product is higher than the single firm solution. The supplier's profit is lowered while that of the buyer is improved. Moreover, a buyer who has a lower marginal cost will extract more profit from the supplier. Under the optimal contract, the supplier employs a cutoff level policy on the buyer's marginal cost to determine whether the buyer should be induced to sign the contract. We characterize the optimal cutoff level and show how it depends on the parameters of the problem. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 41–64, 2001  相似文献   

15.
This paper investigates a production growth logistics system for the machine loading problem (generalized transportation model), with a linear cost structure and minimum levels on total machine hours (resources) and product types (demands). An algorithm is provided for tracing the production growth path of this system, viz. in determining the optimal machine loading schedule of machines for product types, when the volumes of (i) total machine hours, and (ii) the total amount of product types are increased either individually for each total or simultaneously for both. Extensions of this methodology, when (i) the costs of production are convex and piecewise linear, and (ii) when the costs are nonconvex due to quantity discounts, and (iii) when there are upper bounds for productions are also discussed. Finally, a “goal-programming” production growth model where the specified demands are treated as just goals and not as absolute quantities to be satisfied is also considered.  相似文献   

16.
The concept of maximum entropy has been applied to specify the probabilistic model of consumer purchase behavior. This article is concerned with the marketing structure analysis based on entropy model when a new brand has pushed into the existing two-brand market. A comparison between the proposed model and the initial three-brand model is attempted based on their marketing structures. An optimal price decision maximizing the sales is also discussed.  相似文献   

17.
A dynamic and nonstationary model is formulated for a firm which attempts to minimize total expected costs over a finite planning horizon. The control variables are price and production. The price p and the demand ζ are linked through the relationship ζ = g(p) + η, where g(p) is the riskless demand curve and η is a random variable. The general model allows for proportional ordering costs, convex holding and stockout costs, downward sloping riskless demand curve, backlogging, partial backlogging, lost sales, partial spoilage of inventory, and two modes of collecting revenue. Sufficient conditions are developed for this problem to have an optimal policy which resembles the single critical number policy known from stochastic inventory theory. It is also shown what set of parameters will satisfy these sufficiency conditions.  相似文献   

18.
This article generalizes the dynamic and stochastic knapsack problem by allowing the decision‐maker to postpone the accept/reject decision for an item and maintain a queue of waiting items to be considered later. Postponed decisions are penalized with delay costs, while idle capacity incurs a holding cost. This generalization addresses applications where requests of scarce resources can be delayed, for example, dispatching in logistics and allocation of funding to investments. We model the problem as a Markov decision process and analyze it through dynamic programming. We show that the optimal policy with homogeneous‐sized items possesses a bithreshold structure, despite the high dimensionality of the decision space. Finally, the value (or price) of postponement is illustrated through numerical examples. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 267–292, 2015  相似文献   

19.
保修机制是部队引入承制方装备维修力量的重要途径,延伸保修对装备的寿命周期费用以及承制方保修费用有很大影响。针对军方延伸保修购买决策问题,在对维修策略分析的基础上,综合考虑装备维修费用和可用度,建立了延伸保修购买决策相关模型,结合装备承制方保修成本及军方装备维修费用——效能分析,得到了在不同价格区间内延伸保修购买决策,并给出了特定条件下存在的双赢延伸保修价格区间,最后通过实例验证了模型的有效性。  相似文献   

20.
Although the quantity discount problem has been extensively studied in the realm of a single supplier and a single buyer, it is not well understood when a supplier has many different buyers. This paper presents an analysis of a supplier's quantity discount decision when there are many buyers with different demand and cost structures. A common discrete all‐unit quantity discount schedule with many break points is used. After formulating the model, we first analyze buyers' responses to a general discrete quantity discount schedule. This analysis establishes a framework for a supplier to formulate his quantity discount decision. Under this framework, the supplier's optimal quantity discount schedule can be formulated and solved by a simple non‐linear programming model. The applicability of the model is discussed with an application for a large U.S. distribution network. © 2002 John Wiley & Sons, Inc. Naval Research Logistics, 49: 46–59, 2002; DOI 10.1002/nav.1052  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号