首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the flow shop delivery time problem, a set of jobs has to be processed on m machines. Every machine has to process each one of the jobs, and every job has the same routing through the machines. The objective is to determine a sequence of the jobs on the machines so as to minimize maximum delivery completion time over all the jobs, where the delivery completion time of a job is the sum of its completion time, and the delivery time associated with that job. In this paper, we prove the asymptotic optimality of the Longest Delivery Time algorithm for the static version of this problem, and the Longest Delivery Time among Available Jobs (LDTA) algorithm for the dynamic version of this problem. In addition, we present the result of computational testing of the effectiveness of these algorithms. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

2.
We consider a parallel‐machine scheduling problem with jobs that require setups. The duration of a setup does not depend only on the job just completed but on a number of preceding jobs. These setup times are referred to as history‐dependent. Such a scheduling problem is often encountered in the food processing industry as well as in other process industries. In our model, we consider two types of setup times—a regular setup time and a major setup time that becomes necessary after several “hard‐to‐clean” jobs have been processed on the same machine. We consider multiple objectives, including facility utilization, flexibility, number of major setups, and tardiness. We solve several special cases assuming predetermined job sequences and propose strongly polynomial time algorithms to determine the optimal timing of the major setups for given job sequences. We also extend our analysis to develop pseudopolynomial time algorithms for cases with additional objectives, including the total weighted completion time, the total weighted tardiness, and the weighted number of tardy jobs. © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

3.
This article considers batch scheduling with centralized and decentralized decisions. The context of our study is concurrent open shop scheduling where the jobs are to be processed on a set of independent dedicated machines, which process designated operations of the jobs in batches. The batching policy across the machines can be centralized or decentralized. We study such scheduling problems with the objectives of minimizing the maximum lateness, weighted number of tardy jobs, and total weighted completion time, when the job sequence is determined in advance. We present polynomial time dynamic programming algorithms for some cases of these problems and pseudo‐polynomial time algorithms for some problems that are NP‐hard in the ordinary sense. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 58: 17–27, 2011  相似文献   

4.
The majority of scheduling literature assumes that the machines are available at all times. In this paper, we study single machine scheduling problems where the machine maintenance must be performed within certain intervals and hence the machine is not available during the maintenance periods. We also assume that if a job is not processed to completion before the machine is stopped for maintenance, an additional setup is necessary when the processing is resumed. Our purpose is to schedule the maintenance and jobs to minimize some performance measures. The objective functions that we consider are minimizing the total weighted job completion times and minimizing the maximum lateness. In both cases, maintenance must be performed within a fixed period T, and the time for the maintenance is a decision variable. In this paper, we study two scenarios concerning the planning horizon. First, we show that, when the planning horizon is long in relation to T, the problem with either objective function is NP-complete, and we present pseudopolynomial time dynamic programming algorithms for both objective functions. In the second scenario, the planning horizon is short in relation to T. However, part of the period T may have elapsed before we schedule any jobs in this planning horizon, and the remaining time before the maintenance is shorter than the current planning horizon. Hence we must schedule one maintenance in this planning horizon. We show that the problem of minimizing the total weighted completion times in this scenario is NP-complete, while the shortest processing time (SPT) rule and the earliest due date (EDD) rule are optimal for the total completion time problem and the maximum lateness problem respectively. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 845–863, 1999  相似文献   

5.
We consider the problem of scheduling orders on identical machines in parallel. Each order consists of one or more individual jobs. A job that belongs to an order can be processed by any one of the machines. Multiple machines can process the jobs of an order concurrently. No setup is required if a machine switches over from one job to another. Each order is released at time zero and has a positive weight. Preemptions are not allowed. The completion time of an order is the time at which all jobs of that order have been completed. The objective is to minimize the total weighted completion time of the orders. The problem is NP‐hard for any fixed number (≥2) of machines. Because of this, we focus our attention on two classes of heuristics, which we refer to as sequential two‐phase heuristics and dynamic two‐phase heuristics. We perform a worst case analysis as well as an empirical analysis of nine heuristics. Our analyses enable us to rank these heuristics according to their effectiveness, taking solution quality as well as running time into account. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

6.
We study two‐agent scheduling on a single sequential and compatible batching machine in which jobs in each batch are processed sequentially and compatibility means that jobs of distinct agents can be processed in a common batch. A fixed setup time is required before each batch is started. Each agent seeks to optimize some scheduling criterion that depends on the completion times of its own jobs only. We consider several scheduling problems arising from different combinations of some regular scheduling criteria, including the maximum cost (embracing lateness and makespan as its special cases), the total completion time, and the (weighted) number of tardy jobs. Our goal is to find an optimal schedule that minimizes the objective value of one agent, subject to an upper bound on the objective value of the other agent. For each problem under consideration, we provide either a polynomial‐time or a pseudo‐polynomial‐time algorithm to solve it. We also devise a fully polynomial‐time approximation scheme when both agents’ scheduling criteria are the weighted number of tardy jobs.  相似文献   

7.
A set of jobs can be processed without interruption by a flexible machine only if the set of tools required by all jobs can be loaded in the tool magazine. However, in practice the total number of tools required by a job set would exceed the tool magazine capacity. In such situations, the job set has to be carefully partitioned at the start of the production run such that each partition can be processed without interruption. During the production run, if there are unscheduled machine downtimes due to machine failure, this provides an additional opportunity to optimally retool the magazine for a smaller job set consisting of just the unprocessed jobs. In this paper, we study job sequencing rules that allow us to minimize the total expected cost of machine down time due to machine failures and magazine retooling, assuming a dynamic re‐sequencing of the unprocessed jobs after each machine failure. Using these rules, we develop a branch‐and‐bound heuristic that allows us to solve problems of reasonable size. © 2001 John Wiley & Sons, Inc. Naval Research Logistics 48: 79–97, 2001  相似文献   

8.
We investigate a single‐machine scheduling problem for which both the job processing times and due windows are decision variables to be determined by the decision maker. The job processing times are controllable as a linear or convex function of the amount of a common continuously divisible resource allocated to the jobs, where the resource allocated to the jobs can be used in discrete or continuous quantities. We use the common flow allowances due window assignment method to assign due windows to the jobs. We consider two performance criteria: (i) the total weighted number of early and tardy jobs plus the weighted due window assignment cost, and (ii) the resource consumption cost. For each resource consumption function, the objective is to minimize the first criterion, while keeping the value of the second criterion no greater than a given limit. We analyze the computational complexity, devise pseudo‐polynomial dynamic programming solution algorithms, and provide fully polynomial‐time approximation schemes and an enhanced volume algorithm to find high‐quality solutions quickly for the considered problems. We conduct extensive numerical studies to assess the performance of the algorithms. The computational results show that the proposed algorithms are very efficient in finding optimal or near‐optimal solutions. © 2017 Wiley Periodicals, Inc. Naval Research Logistics, 64: 41–63, 2017  相似文献   

9.
This paper tackles the general single machine scheduling problem, where jobs have different release and due dates and the objective is to minimize the weighted number of late jobs. The notion of master sequence is first introduced, i.e., a sequence that contains at least an optimal sequence of jobs on time. This master sequence is used to derive an original mixed‐integer linear programming formulation. By relaxing some constraints, a Lagrangean relaxation algorithm is designed which gives both lower and upper bounds. The special case where jobs have equal weights is analyzed. Computational results are presented and, although the duality gap becomes larger with the number of jobs, it is possible to solve problems of more than 100 jobs. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 50: 2003  相似文献   

10.
We consider scheduling problems involving two agents (agents A and B), each having a set of jobs that compete for the use of a common machine to process their respective jobs. The due dates of the A‐jobs are decision variables, which are determined by using the common (CON) or slack (SLK) due date assignment methods. Each agent wants to minimize a certain performance criterion depending on the completion times of its jobs only. Under each due date assignment method, the criterion of agent A is always the same, namely an integrated criterion consisting of the due date assignment cost and the weighted number of tardy jobs. Several different criteria are considered for agent B, including the maxima of regular functions (associated with each job), the total (weighted) completion time, and the weighted number of tardy jobs. The overall objective is to minimize the performance criterion of agent A, while keeping the objective value of agent B no greater than a given limit. We analyze the computational complexity, and devise polynomial or pseudo‐polynomial dynamic programming algorithms for the considered problems. We also convert, if viable, any of the devised pseudopolynomial dynamic programming algorithms into a fully polynomial‐time approximation scheme. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 416–429, 2016  相似文献   

11.
The paper deals with a problem of scheduling a set of jobs on a single machine. Before a job is released for processing, it must undergo some preprocessing treatment that consumes resources. It is assumed that the release date of a job is a linear decreasing continuous function of the amount of a locally and globally constrained, continuously divisible resource (e.g., energy, catalyzer, financial outlay, gas). The problem is to find a sequence of jobs and a resource allocation that will minimize the maximum job completion time. Such a problem appears, for example, in the ingot preheating and hot-rolling process in steel mills. It is shown that the problem is strongly NP-hard. Some polynomially solvable cases of the problem and approximate algorithms with both experimental and worst-case analysis are presented. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 99–113, 1998  相似文献   

12.
Most papers in the scheduling field assume that a job can be processed by only one machine at a time. Namely, they use a one‐job‐on‐one‐machine model. In many industry settings, this may not be an adequate model. Motivated by human resource planning, diagnosable microprocessor systems, berth allocation, and manufacturing systems that may require several resources simultaneously to process a job, we study the problem with a one‐job‐on‐multiple‐machine model. In our model, there are several alternatives that can be used to process a job. In each alternative, several machines need to process simultaneously the job assigned. Our purpose is to select an alternative for each job and then to schedule jobs to minimize the completion time of all jobs. In this paper, we provide a pseudopolynomial algorithm to solve optimally the two‐machine problem, and a combination of a fully polynomial scheme and a heuristic to solve the three‐machine problem. We then extend the results to a general m‐machine problem. Our algorithms also provide an effective lower bounding scheme which lays the foundation for solving optimally the general m‐machine problem. Furthermore, our algorithms can also be applied to solve a special case of the three‐machine problem in pseudopolynomial time. Both pseudopolynomial algorithms (for two‐machine and three‐machine problems) are much more efficient than those in the literature. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 57–74, 1999  相似文献   

13.
This paper considers a two-agent scheduling problem with linear resource-dependent processing times, in which each agent has a set of jobs that compete with that of the other agent for the use of a common processing machine, and each agent aims to minimize the weighted number of its tardy jobs. To meet the due date requirements of the jobs of the two agents, additional amounts of a common resource, which may be in discrete or continuous quantities, can be allocated to the processing of the jobs to compress their processing durations. The actual processing time of a job is a linear function of the amount of the resource allocated to it. The objective is to determine the optimal job sequence and resource allocation strategy so as to minimize the weighted number of tardy jobs of one agent, while keeping the weighted number of tardy jobs of the other agent, and the total resource consumption cost within their respective predetermined limits. It is shown that the problem is -hard in the ordinary sense, and there does not exist a polynomial-time approximation algorithm with performance ratio unless ; however it admits a relaxed fully polynomial time approximation scheme. A proximal bundle algorithm based on Lagrangian relaxation is also presented to solve the problem approximately. To speed up convergence and produce sharp bounds, enhancement strategies including the design of a Tabu search algorithm and integration of a Lagrangian recovery heuristic into the algorithm are devised. Extensive numerical studies are conducted to assess the effectiveness and efficiency of the proposed algorithms.  相似文献   

14.
We consider a stochastic counterpart of the well-known earliness-tardiness scheduling problem with a common due date, in which n stochastic jobs are to be processed on a single machine. The processing times of the jobs are independent and normally distributed random variables with known means and known variances that are proportional to the means. The due dates of the jobs are random variables following a common probability distribution. The objective is to minimize the expectation of a weighted combination of the earliness penalty, the tardiness penalty, and the flow-time penalty. One of our main results is that an optimal sequence for the problem must be V-shaped with respect to the mean processing times. Other characterizations of the optimal solution are also established. Two algorithms are proposed, which can generate optimal or near-optimal solutions in pseudopolynomial time. The proposed algorithms are also extended to problems where processing times do not satisfy the assumption in the model above, and are evaluated when processing times follow different probability distributions, including general normal (without the proportional relation between variances and means), uniform, Laplace, and exponential. © 1997 John Wiley & Sons, Inc. Naval Research Logistics 44, 531–557, 1997.  相似文献   

15.
In a recent paper, Hamilton Emmons has established theorems relating to the order in which pairs of jobs are to be processed in an optimal schedule to minimize the total tardiness of performing n jobs on one machine. Using these theorems, the algorithm of this paper determines the precedence relationships among pairs of jobs (whenever possible) and eliminates the first and the last few jobs in an optimal sequence. The remaining jobs are then ordered by incorporating the precedence relationships in a dynamic programming framework. Propositions are proved which considerably reduce the total computation involved in the dynamic programming phase. Computational results indicate that the solution time goes up less than linearly with the size (n) of the problem. The median solution time for solving 50 job problems was 0.36 second on UNIVAC 1108 computer.  相似文献   

16.
We consider server scheduling on parallel dedicated machines to minimize the makespan. Each job has a loading operation and a processing operation. The loading operation requires a server that serves all the jobs. Each machine has a given set of jobs to process, and the processing sequence is known and fixed. We design a polynomial‐time algorithm to solve the two‐machine case of the problem. When the number of machines is arbitrary, the problem becomes strongly NP‐hard even if all the jobs have the same processing length or all the loading operations require a unit time. We design two heuristic algorithms to treat the case where all the loading times are unit and analyze their performance.  相似文献   

17.
We study the problems of scheduling a set of nonpreemptive jobs on a single or multiple machines without idle times where the processing time of a job is a piecewise linear nonincreasing function of its start time. The objectives are the minimization of makespan and minimization of total job completion time. The single machine problems are proved to be NP‐hard, and some properties of their optimal solutions are established. A pseudopolynomial time algorithm is constructed for makespan minimization. Several heuristics are derived for both total completion time and makespan minimization. Computational experiments are conducted to evaluate their efficiency. NP‐hardness proofs and polynomial time algorithms are presented for some special cases of the parallel machine problems. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 531–554, 2003  相似文献   

18.
This paper examines problems of sequencing n jobs for processing by a single resource to minimize a function of job completion times, when the availability of the resource varies over time. A number of well-known results for single-machine problems which can be applied with little or no modification to the corresponding variable-resource problems are given. However, it is shown that the problem of minimizing the weighted sum of completion times provides an exception.  相似文献   

19.
We consider scheduling a set of jobs with deadlines to minimize the total weighted late work on a single machine, where the late work of a job is the amount of processing of the job that is scheduled after its due date and before its deadline. This is the first study on scheduling with the late work criterion under the deadline restriction. In this paper, we show that (i) the problem is unary NP‐hard even if all the jobs have a unit weight, (ii) the problem is binary NP‐hard and admits a pseudo‐polynomial‐time algorithm and a fully polynomial‐time approximation scheme if all the jobs have a common due date, and (iii) some special cases of the problem are polynomially solvable.  相似文献   

20.
We study a single batching machine scheduling problem with transportation and deterioration considerations arising from steel production. A set of jobs are transported, one at a time, by a vehicle from a holding area to the single batching machine. The machine can process several jobs simultaneously as a batch. The processing time of a job will increase if the duration from the time leaving the holding area to the start of its processing exceeds a given threshold. The time needed to process a batch is the longest of the job processing times in the batch. The problem is to determine the job sequence for transportation and the job batching for processing so as to minimize the makespan and the number of batches. We study four variations (P1, P2, P3, P4) of the problem with different treatments of the two criteria. We prove that all the four variations are strongly NP‐hard and further develop polynomial time algorithms for their special cases. For each of the first three variations, we propose a heuristic algorithm and analyze its worst‐case performance. For P4, which is to find the Pareto frontier, we provide a heuristic algorithm and an exact algorithm based on branch and bound. Computational experiments show that all the heuristic algorithms perform well on randomly generated problem instances, and the exact algorithm for P4 can obtain Pareto optimal schedules for small‐scale instances. © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 269–285, 2014  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号