首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider the single machine parallel batch scheduling problems to minimize makespan and total completion time, respectively, under precedence relations. The complexities of these two problems are reported as open in the literature. In this paper, we settle these open questions by showing that both problems are strongly NP‐hard, even when the precedence relations are chains. When the processing times of jobs are directly agreeable or inversely agreeable with the precedence relations, there is an O(n2) time algorithm to minimize the makespan. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004  相似文献   

2.
The problem of sequencing n jobs on one machine is considered, under the multiple objective of minimizing mean flow time with the minimum number of tardy jobs. A simple procedure is first proposed to schedule for minimum flow time with a specified subset of jobs on time. This is used in conjunction with Moore's Algorithm in a simple heuristic producing good and often optimal schedules. A branch-bound algorithm is presented to produce the optimal schedule efficiently with the help of several theorems which eliminate much branching.  相似文献   

3.
In this paper we consider n jobs and a number of machines in parallel. The machines are identical and subject to breakdown and repair. The number may therefore vary over time and is at time t equal to m(t). Preemptions are allowed. We consider three objectives, namely, the total completion time, ∑ Cj, the makespan Cmax, and the maximum lateness Lmax. We study the conditions on m(t) under which various rules minimize the objective functions under consideration. We analyze cases when the jobs have deadlines to meet and when the jobs are subject to precedence constraints. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

4.
The problem of minimizing mean flow time of two parallel processors is discussed. Prior results are briefly reviewed. A dynamic programming algorithm is presented which minimizes mean flow time for a set of n preordered jobs on two nonequivalent parallel processors. The algorithm is illustrated with an example problem. The computational experience is presented which illustrates the efficiency of the algorithm.  相似文献   

5.
We consider scheduling problems involving two agents (agents A and B), each having a set of jobs that compete for the use of a common machine to process their respective jobs. The due dates of the A‐jobs are decision variables, which are determined by using the common (CON) or slack (SLK) due date assignment methods. Each agent wants to minimize a certain performance criterion depending on the completion times of its jobs only. Under each due date assignment method, the criterion of agent A is always the same, namely an integrated criterion consisting of the due date assignment cost and the weighted number of tardy jobs. Several different criteria are considered for agent B, including the maxima of regular functions (associated with each job), the total (weighted) completion time, and the weighted number of tardy jobs. The overall objective is to minimize the performance criterion of agent A, while keeping the objective value of agent B no greater than a given limit. We analyze the computational complexity, and devise polynomial or pseudo‐polynomial dynamic programming algorithms for the considered problems. We also convert, if viable, any of the devised pseudopolynomial dynamic programming algorithms into a fully polynomial‐time approximation scheme. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 416–429, 2016  相似文献   

6.
This paper tackles the general single machine scheduling problem, where jobs have different release and due dates and the objective is to minimize the weighted number of late jobs. The notion of master sequence is first introduced, i.e., a sequence that contains at least an optimal sequence of jobs on time. This master sequence is used to derive an original mixed‐integer linear programming formulation. By relaxing some constraints, a Lagrangean relaxation algorithm is designed which gives both lower and upper bounds. The special case where jobs have equal weights is analyzed. Computational results are presented and, although the duality gap becomes larger with the number of jobs, it is possible to solve problems of more than 100 jobs. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 50: 2003  相似文献   

7.
We consider the problem of scheduling n independent and simultaneously available jobs without preemption on a single machine, where the machine has a fixed maintenance activity. The objective is to find the optimal job sequence to minimize the total amount of late work, where the late work of a job is the amount of processing of the job that is performed after its due date. We first discuss the approximability of the problem. We then develop two pseudo‐polynomial dynamic programming algorithms and a fully polynomial‐time approximation scheme for the problem. Finally, we conduct extensive numerical studies to evaluate the performance of the proposed algorithms. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 172–183, 2016  相似文献   

8.
We consider the transportation problem of determining nonnegative shipments from a set of m warehouses with given availabilities to a set of n markets with given requirements. Three objectives are defined for each solution: (i) total cost, TC, (ii) bottleneck time, BT (i.e., maximum transportation time for a positive shipment), and (iii) bottleneck shipment, SB (i.e., total shipment over routes with bottleneck time). An algorithm is given for determining all efficient (pareto-optimal or nondominated) (TC, BT) solution pairs. The special case of this algorithm when all the unit cost coefficients are zero is shown to be the same as the algorithms for minimizing BT. provided by Szwarc and Hammer. This algorithm for minimizing BT is shown to be computationally superior. Transportation or assignment problems with m=n=100 average about a second on the UNIVAC 1108 computer (FORTRAN V)) to the threshold algorithm for minimizing BT. The algorithm is then extended to provide not only all the efficient (TC, BT) solution pairs but also, for each such BT, all the efficient (TC, SB) solution pairs. The algorithms are based on the cost operator theory of parametric programming for the transportation problem developed by the authors.  相似文献   

9.
This paper deals with flowshop/sum of completion times scheduling problems, working under a “no-idle” or a “no-wait” constraint, the former prescribes for the machines to work continuously without idle intervals and the latter for the jobs to be processed continuously without waiting times between consecutive machines. Under either of the constraints the problem is unary NP-Complete for two machines. We prove some properties of the optimal schedule for n/2/F, no-idle/σCi. For n/m/P, no-idle/σCi, and n/m/P, no-wait/σCi, with an increasing or decreasing series of dominating machines, we prove theorems that are the basis for polynomial bounded algorithms. All theorems are demonstrated numerically.  相似文献   

10.
We consider the problem of rescheduling n jobs to minimize the makespan on m parallel identical processors when m changes value. We show this problem to be NP-hard in general. Call a list schedule totally optimal if it is optimal for all m = 1, …,n. When n is less than 6, there always exists a totally optimal schedule, but for n ≥ 6 this can fail. We show that an exact solution is less robust than the largest processing time first (LPT) heuristic and discuss implications for polynomial approximation schemes and hierarchical planning models.  相似文献   

11.
We consider the scheduling of n jobs on m identical machines when the jobs become available for processing at ready times ai, ai, ? 0, require di time units for processing and must be completed by times bi for i = 1, 2, … n. The objective chosen is that of minimizing the total elapsed time to complete all jobs subject to the ready time and due date constraints, preemption is not allowed. We present a multi-stage solution algorithm for this problem that is based on an implicit enumeration procedure and also uses the labelling type algorithm which solves the problem when preemption is allowed.  相似文献   

12.
We study a deterministic two‐machine flowshop scheduling problem with an assumption that one of the two machines is not available in a specified time period. This period can be due to a breakdown, preventive maintenance, or processing unfinished jobs from a previous planning horizon. The problem is known to be NP‐hard. Pseudopolynomial dynamic programming algorithms and heuristics with worst case error bounds are given in the literature to solve the problem. They are different for the cases when the unavailability interval is for the first or second machine. The existence of a fully polynomial time approximation scheme (FPTAS) was formulated as an open conjecture in the literature. In this paper, we show that the two cases of the problem under study are equivalent to similar partition type problems. Then we derive a generic FPTAS for the latter problems with O(n54) time complexity. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

13.
This paper deals with a flow-shop problem where the n jobs are being processed uninterrupted by m machines. A comprehensive theory based on “an earliest starting time of a job” concept produced the most efficient solution method for a variety of optimization criteria. The paper also rectifies several known results in this area.  相似文献   

14.
Both topics of batch scheduling and of scheduling deteriorating jobs have been very popular among researchers in the last two decades. In this article, we study a model combining these two topics. We consider a classical batch scheduling model with unit‐jobs and batch‐independent setup times, and a model of step‐deterioration of processing times. The objective function is minimum flowtime. The optimal solution of the relaxed version (allowing non‐integer batch sizes) is shown to have a unique structure consisting of two consecutive decreasing arithmetic sequences of batch sizes. We also introduce a simple and efficient rounding procedure that guarantees integer batch sizes. The entire solution procedure requires an effort of O(n) (where nis the number of jobs.) © 2012 Wiley Periodicals, Inc. Naval Research Logistics, 2012  相似文献   

15.
This article concerns the scheduling of n jobs around a common due date, so as to minimize the average total earliness plus total lateness of the jobs. Optimality conditions for the problem are developed, based on its equivalence to an easy scheduling problem. It seems that this problem inherently has a huge number of optimal solutions and an algorithm is developed to find many of them. The model is extended to allow for the availability of multiple parallel processors and an efficient algorithm is developed for that problem. In this more general case also, the algorithm permits great flexibility in finding an optimal schedule.  相似文献   

16.
Motivated by the flow of products in the iron and steel industry, we study an identical and parallel machine scheduling problem with batch deliveries, where jobs finished on the parallel machines are delivered to customers in batches. Each delivery batch has a capacity and incurs a cost. The objective is to find a coordinated production and delivery schedule that minimizes the total flow time of jobs plus the total delivery cost. This problem is an extension of the problem considered by Hall and Potts, Ann Oper Res 135 (2005) 41–64, who studied a two‐machine problem with an unbounded number of transporters and unbounded delivery capacity. We first provide a dynamic programming algorithm to solve a special case with a given job assignment to the machines. A heuristic algorithm is then presented for the general problem, and its worst‐case performance ratio is analyzed. The computational results show that the heuristic algorithm can generate near‐optimal solutions. Finally, we offer a fully polynomial‐time approximation scheme for a fixed number of machines. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 492–502, 2016  相似文献   

17.
This paper presents a branch and bound algorithm for computing optimal replacement policies in a discrete‐time, infinite‐horizon, dynamic programming model of a binary coherent system with n statistically independent components, and then specializes the algorithm to consecutive k‐out‐of‐n systems. The objective is to minimize the long‐run expected average undiscounted cost per period. (Costs arise when the system fails and when failed components are replaced.) An earlier paper established the optimality of following a critical component policy (CCP), i.e., a policy specified by a critical component set and the rule: Replace a component if and only if it is failed and in the critical component set. Computing an optimal CCP is a optimization problem with n binary variables and a nonlinear objective function. Our branch and bound algorithm for solving this problem has memory storage requirement O(n) for consecutive k‐out‐of‐n systems. Extensive computational experiments on such systems involving over 350,000 test problems with n ranging from 10 to 150 find this algorithm to be effective when n ≤ 40 or k is near n. © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 288–302, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10017  相似文献   

18.
The problem considered is to assign n jobs to two processors so as to minimize the total flow time, with the constraint that a predetermined partial ordering (induced by batch arrivals) must be preserved within the subset of jobs assigned to each processor. An efficient algorithm of time 0(n5) is developed, and computational experience is reported.  相似文献   

19.
The dynamic transportation problem is a transportation problem over time. That is, a problem of selecting at each instant of time t, the optimal flow of commodities from various sources to various sinks in a given network so as to minimize the total cost of transportation subject to some supply and demand constraints. While the earliest formulation of the problem dates back to 1958 as a problem of finding the maximal flow through a dynamic network in a given time, the problem has received wider attention only in the last ten years. During these years, the problem has been tackled by network techniques, linear programming, dynamic programming, combinational methods, nonlinear programming and finally, the optimal control theory. This paper is an up-to-date survey of the various analyses of the problem along with a critical discussion, comparison, and extensions of various formulations and techniques used. The survey concludes with a number of important suggestions for future work.  相似文献   

20.
We investigate the solvability of two single‐machine scheduling problems when the objective is to identify among all job subsets with cardinality k,1≤kn, the one that has the minimum objective function value. For the single‐machine minimum maximum lateness problem, we conclude that the problem is solvable in O(n2) time using the proposed REMOVE algorithm. This algorithm can also be used as an alternative to Moore's algorithm to solve the minimum number of tardy jobs problem by actually solving the hierarchical problem in which the objective is to minimize the maximum lateness subject to the minimum number of tardy jobs. We then show that the REMOVE algorithm cannot be used to solve the general case of the single‐machine total‐weighted completion time problem; we derive sufficient conditions among the job parameters so that the total weighted completion time problem becomes solvable in O(n2) time. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 449–453, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号