首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We develop a risk‐sensitive strategic facility sizing model that makes use of readily obtainable data and addresses both capacity and responsiveness considerations. We focus on facilities whose original size cannot be adjusted over time and limits the total production equipment they can hold, which is added sequentially during a finite planning horizon. The model is parsimonious by design for compatibility with the nature of available data during early planning stages. We model demand via a univariate random variable with arbitrary forecast profiles for equipment expansion, and assume the supporting equipment additions are continuous and decided ex‐post. Under constant absolute risk aversion, operating profits are the closed‐form solution to a nontrivial linear program, thus characterizing the sizing decision via a single first‐order condition. This solution has several desired features, including the optimal facility size being eventually decreasing in forecast uncertainty and decreasing in risk aversion, as well as being generally robust to demand forecast uncertainty and cost errors. We provide structural results and show that ignoring risk considerations can lead to poor facility sizing decisions that deteriorate with increased forecast uncertainty. Existing models ignore risk considerations and assume the facility size can be adjusted over time, effectively shortening the planning horizon. Our main contribution is in addressing the problem that arises when that assumption is relaxed and, as a result, risk sensitivity and the challenges introduced by longer planning horizons and higher uncertainty must be considered. Finally, we derive accurate spreadsheet‐implementable approximations to the optimal solution, which make this model a practical capacity planning tool.© 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

2.
Like airlines and hotels, sports teams and entertainment venues can benefit from revenue management efforts for their ticket sales. Teams and entertainment venues usually offer bundles of tickets early in their selling horizon and put single‐event tickets on sale at a later date; these organizations must determine the best time to offer individual tickets because both types of ticket sales consume the same fixed inventory. We model the optimal a priori timing decision for a seller with a fixed number of identical tickets to switch from selling the tickets as fixed bundles to individual tickets to maximize the revenue realized before the start of the performance season. We assume that bundle and single‐ticket customers each arrive according to independent, nonhomogeneous Markovian death processes with a linear death rate that can vary over time and that the benefit from selling a ticket in a package is higher than from selling the ticket individually. We characterize the circumstances in which it is optimal for the seller to practice mixed bundling and when the seller should only sell bundles or individual tickets, and we establish comparative statics for the optimal timing decision for the special case of constant customer arrival rates. We extend our analytical results to find the optimal time for offering two groups of tickets with high and low demand. Finally, we apply the timing model to a data set obtained from the sports industry. © 2007 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

3.
The majority of scheduling literature assumes that the machines are available at all times. In this paper, we study single machine scheduling problems where the machine maintenance must be performed within certain intervals and hence the machine is not available during the maintenance periods. We also assume that if a job is not processed to completion before the machine is stopped for maintenance, an additional setup is necessary when the processing is resumed. Our purpose is to schedule the maintenance and jobs to minimize some performance measures. The objective functions that we consider are minimizing the total weighted job completion times and minimizing the maximum lateness. In both cases, maintenance must be performed within a fixed period T, and the time for the maintenance is a decision variable. In this paper, we study two scenarios concerning the planning horizon. First, we show that, when the planning horizon is long in relation to T, the problem with either objective function is NP-complete, and we present pseudopolynomial time dynamic programming algorithms for both objective functions. In the second scenario, the planning horizon is short in relation to T. However, part of the period T may have elapsed before we schedule any jobs in this planning horizon, and the remaining time before the maintenance is shorter than the current planning horizon. Hence we must schedule one maintenance in this planning horizon. We show that the problem of minimizing the total weighted completion times in this scenario is NP-complete, while the shortest processing time (SPT) rule and the earliest due date (EDD) rule are optimal for the total completion time problem and the maximum lateness problem respectively. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 845–863, 1999  相似文献   

4.
Consider a supplier offering a product to several potential demand sources, each with a unique revenue, size, and probability that it will materialize. Given a long procurement lead time, the supplier must choose the orders to pursue and the total quantity to procure prior to the selling season. We model this as a selective newsvendor problem of maximizing profits where the total (random) demand is given by the set of pursued orders. Given that the dimensionality of a mixed‐integer linear programming formulation of the problem increases exponentially with the number of potential orders, we develop both a tailored exact algorithm based on the L‐shaped method for two‐stage stochastic programming as well as a heuristic method. We also extend our solution approach to account for piecewise‐linear cost and revenue functions as well as a multiperiod setting. Extensive experimentation indicates that our exact approach rapidly finds optimal solutions with three times as many orders as a state‐of‐the‐art commercial solver. In addition, our heuristic approach provides average gaps of less than 1% for the largest problems that can be solved exactly. Observing that the gaps decrease as problem size grows, we expect the heuristic approach to work well for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008  相似文献   

5.
In this article, we consider a classic dynamic inventory control problem of a self‐financing retailer who periodically replenishes its stock from a supplier and sells it to the market. The replenishment decisions of the retailer are constrained by cash flow, which is updated periodically following purchasing and sales in each period. Excess demand in each period is lost when insufficient inventory is in stock. The retailer's objective is to maximize its expected terminal wealth at the end of the planning horizon. We characterize the optimal inventory control policy and present a simple algorithm for computing the optimal policies for each period. Conditions are identified under which the optimal control policies are identical across periods. We also present comparative statics results on the optimal control policy. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008  相似文献   

6.
We present a stochastic programming approach to capacity planning under demand uncertainty in semiconductor manufacturing. Given multiple demand scenarios together with associated probabilities, our aim is to identify a set of tools that is a good compromise for all these scenarios. More precisely, we formulate a mixed‐integer program in which expected value of the unmet demand is minimized subject to capacity and budget constraints. This is a difficult two‐stage stochastic mixed‐integer program which cannot be solved to optimality in a reasonable amount of time. We instead propose a heuristic that can produce near‐optimal solutions. Our heuristic strengthens the linear programming relaxation of the formulation with cutting planes and performs limited enumeration. Analyses of the results in some real‐life situations are also presented. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

7.
This article presents a flexible days‐on and days‐off scheduling problem and develops an exact branch and price (B&P) algorithm to find solutions. The main objective is to minimize the size of the total workforce required to cover time‐varying demand over a planning horizon that may extend up to 12 weeks. A new aspect of the problem is the general restriction that the number of consecutive days on and the number of consecutive days off must each fall within a predefined range. Moreover, the total assignment of working days in the planning horizon cannot exceed some maximum value. In the B&P framework, the master problem is stated as a set covering‐type problem whose columns are generated iteratively by solving one of three different subproblems. The first is an implicit model, the second is a resource constrained shortest path problem, and the third is a dynamic program. Computational experiments using both real‐word and randomly generated data show that workforce reductions up to 66% are possible with highly flexible days‐on and days‐off patterns. When evaluating the performance of the three subproblems, it was found that each yielded equivalent solutions but the dynamic program proved to be significantly more efficient. © 2013 Wiley Periodicals, Inc. Naval Research Logistics 60: 678–701, 2013  相似文献   

8.
The present paper provides a proof that the Bayes prediction ordering policy developed in [3] is an optimal policy, in the sense that it minimizes the total expected discounted cost of ordering for any finite planning horizon.  相似文献   

9.
Consider a sequential dynamic pricing model where a seller sells a given stock to a random number of customers. Arriving one at a time, each customer will purchase one item if the product price is lower than her personal reservation price. The seller's objective is to post a potentially different price for each customer in order to maximize the expected total revenue. We formulate the seller's problem as a stochastic dynamic programming model, and develop an algorithm to compute the optimal policy. We then apply the results from this sequential dynamic pricing model to the case where customers arrive according to a continuous‐time point process. In particular, we derive tight bounds for the optimal expected revenue, and develop an asymptotically optimal heuristic policy. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

10.
The purpose of this paper is to investigate the problem of constructing an appointment template for scheduling patients at a specific type of multidisciplinary outpatient clinic called an integrated practice unit (IPU). The focus is on developing and solving a stochastic optimization model for a back pain IPU in the face of random arrivals, an uncertain patient mix, and variable service times. The deterministic version of the problem is modeled as a mixed integer program with the objective of minimizing a weighted combination of clinic closing time (duration) and total patient waiting time (length of stay). A two‐stage stochastic program is then derived to account for the randomness and the sequential nature of the decisions. Although it was not possible to solve the two‐stage problem for even a limited number of scenarios, the wait‐and‐see (WS) problem was sufficiently tractable to provide a lower bound on the stochastic solution. The introduction of valid inequalities, limiting indices, and the use of special ordered sets helped to speed up the computations. A greedy heuristic was also developed to obtain solutions much more quickly. Out of practical considerations, it was necessary to develop appointment templates with time slots at fixed intervals, which are not available from the WS solution. The first to be derived was the expected value (EV) template that is used to find the expected value of the EV solution (EEV). This solution provides an upper bound on the objective function value of the two‐stage stochastic program. The average gap between the EEV and WS solutions was 18%. Results from extensive computational testing are presented for the EV template and for our adaptation of three other templates found in the literature. Depending on the relative importance of the two objective function metrics, the results demonstrate the trade‐off that exists between them. For the templates investigated, the “closing time” ranged from an average of 235 to 275 minutes for a 300‐minute session, while the corresponding “total patient time in clinic” ranged from 80 to 71 minutes.  相似文献   

11.
This paper studies three tool replacement/operation sequencing strategies for a flexible manufacturing system over a finite time horizon: (1) failure replacement—replace the tool only upon failure, (2) optimal preventive tool replacement for a fixed sequence of operations, and (3) joint scheduling of the optimal preventive tool replacement times and the optimal sequence of operations. Stochastic dynamic decision models are used for strategies 2 and 3. The optimization criterion for strategies 2 and 3 is the minimization of the total expected cost over the finite time horizon. We will show through numerical studies that, with the same amount of information, the total expected costs can be reduced considerably by choosing an optimal strategy. Our conclusion is that in flexible manufacturing, optimal tool replacement and optimal operations sequencing are not separate issues. They should be considered jointly to minimize the expected total cost. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 479–499, 2000  相似文献   

12.
We develop a competitive pricing model which combines the complexity of time‐varying demand and cost functions and that of scale economies arising from dynamic lot sizing costs. Each firm can replenish inventory in each of the T periods into which the planning horizon is partitioned. Fixed as well as variable procurement costs are incurred for each procurement order, along with inventory carrying costs. Each firm adopts, at the beginning of the planning horizon, a (single) price to be employed throughout the horizon. On the basis of each period's system of demand equations, these prices determine a time series of demands for each firm, which needs to service them with an optimal corresponding dynamic lot sizing plan. We establish the existence of a price equilibrium and associated optimal dynamic lotsizing plans, under mild conditions. We also design efficient procedures to compute the equilibrium prices and dynamic lotsizing plans.© 2008 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

13.
Suppose that a multicomponent reliability system earns revenue while it is working and that it has a finite number of possible failure states (defined as states in which it ceases to work), each with a known prior probability. When the system stops working its components can be inspected one at a time, and, if necessary, replaced or repaired, until the system is restored to its original (operating) state. Inspections (as well as replacements or repairs) are time consuming and expensive. An optimal adaptive inspection strategy for examining and fixing the components of a failed system restores it as efficiently as possible, taking into account the opportunity costs due to lost revenue while the system remains failed as well as the costs and times required for inspections. This article presents exact and heuristic procedures for constructing optimal adaptive strategies for k-out-of-n and general coherent systems. Average revenue per unit time is taken as the maximand for most of the article, but characterizations of optimality are also obtained for series systems in the case of discounted return over an infinite planning horizon. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
This paper studies a periodic‐review pricing and inventory control problem for a retailer, which faces stochastic price‐sensitive demand, under quite general modeling assumptions. Any unsatisfied demand is lost, and any leftover inventory at the end of the finite selling horizon has a salvage value. The cost component for the retailer includes holding, shortage, and both variable and fixed ordering costs. The retailer's objective is to maximize its discounted expected profit over the selling horizon by dynamically deciding on the optimal pricing and replenishment policy for each period. We show that, under a mild assumption on the additive demand function, at the beginning of each period an (s,S) policy is optimal for replenishment, and the value of the optimal price depends on the inventory level after the replenishment decision has been done. Our numerical study also suggests that for a sufficiently long selling horizon, the optimal policy is almost stationary. Furthermore, the fixed ordering cost (K) plays a significant role in our modeling framework. Specifically, any increase in K results in lower s and higher S. On the other hand, the profit impact of dynamically changing the retail price, contrasted with a single fixed price throughout the selling horizon, also increases with K. We demonstrate that using the optimal policy values from a model with backordering of unmet demands as approximations in our model might result in significant profit penalty. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

15.
We study an admission control model in revenue management with nonstationary and correlated demands over a finite discrete time horizon. The arrival probabilities are updated by current available information, that is, past customer arrivals and some other exogenous information. We develop a regret‐based framework, which measures the difference in revenue between a clairvoyant optimal policy that has access to all realizations of randomness a priori and a given feasible policy which does not have access to this future information. This regret minimization framework better spells out the trade‐offs of each accept/reject decision. We proceed using the lens of approximation algorithms to devise a conceptually simple regret‐parity policy. We show the proposed policy achieves 2‐approximation of the optimal policy in terms of total regret for a two‐class problem, and then extend our results to a multiclass problem with a fairness constraint. Our goal in this article is to make progress toward understanding the marriage between stochastic regret minimization and approximation algorithms in the realm of revenue management and dynamic resource allocation. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 433–448, 2016  相似文献   

16.
A dynamic and nonstationary model is formulated for a firm which attempts to minimize total expected costs over a finite planning horizon. The control variables are price and production. The price p and the demand ζ are linked through the relationship ζ = g(p) + η, where g(p) is the riskless demand curve and η is a random variable. The general model allows for proportional ordering costs, convex holding and stockout costs, downward sloping riskless demand curve, backlogging, partial backlogging, lost sales, partial spoilage of inventory, and two modes of collecting revenue. Sufficient conditions are developed for this problem to have an optimal policy which resembles the single critical number policy known from stochastic inventory theory. It is also shown what set of parameters will satisfy these sufficiency conditions.  相似文献   

17.
This paper describes a method for determining optimal repair and replacement policies for aireraft, with specific reference to the F–4. The objective of the analysis is to choose the set of policies from all possible alternatives over a finite planning horizon which minimizes the cost of operations. A dynamic program is presented which seeks an optimal path through a series of decision periods, when each period begins with the choice of keeping an aircraft, reworking it before further operation, or buying a new one. We do not consider changes in technology. Therefore, when a replacement does occur, it is made with a similar aircraft. Multivariate statistical techniques are used to estimate the relevant costs as a function of age, and time since last rework.  相似文献   

18.
In this article, we develop a stochastic approximation algorithm to find good bid price policies for the joint capacity allocation and overbooking problem over an airline network. Our approach is based on visualizing the total expected profit as a function of the bid prices and searching for a good set of bid prices by using the stochastic gradients of the total expected profit function. We show that the total expected profit function that we use is differentiable with respect to the bid prices and derive a simple expression that can be used to compute its stochastic gradients. We show that the iterates of our stochastic approximation algorithm converge to a stationary point of the total expected profit function with probability 1. Our computational experiments indicate that the bid prices computed by our approach perform significantly better than those computed by standard benchmark strategies and the performance of our approach is relatively insensitive to the frequency with which we recompute the bid prices over the planning horizon. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

19.
This paper presents a single-item inventory model with deterministic demand where the buyer is allowed to search for the most favorable price before deciding on the order quantity. In the beginning of each period, a sequential random sample can be taken from a known distribution and there is a fixed cost per search. The decision maker is faced with the task of deciding when to initiate and when to stop the search process, as well as determining the optimal order quantity once the search process is terminated. The objective is to minimize total expected costs while satisfying all demands on time. We demonstrate that a set of critical numbers determine the optimal stopping and ordering strategies. We present recursive expressions yielding the critical numbers, as well as the minimal expected cost from the beginning of every period to the end of the horizon.  相似文献   

20.
This paper develops a forward algorithm and planning horizon procedures for an important machine replacement model where it is assumed that the technological environment is improving over time and that the machine-in-use can be replaced by any of the several different kinds of machines available at that time. The set of replacement alternatives may include (i) new machines with different types of technologies such as labor- and capital- intensive, (ii) used machines, (iii) repairs and/or improvements which affect the performance characteristics of the existing machine, and so forth. The forward dynamic programming algorithm in the paper can be used to solve a finite horizon problem. The planning horizon results give a procedure to identify the forecast horizon T such that the optimal replacement decision for the first machine based on the forecast of machine technology until period T remains optimal for any problem with horizon longer than T and, for that matter, for the infinite horizon problem. A flow chart and a numerical example have been included to illustrate the algorithm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号