首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
利用热分析技术对受油类污染的棉纤维的热分解特性和热分解动力学进行了研究。经过不同机制热分解模型的拟合,提出了受实验用油污染棉纤维的热分解动力学机理,并建立了其热分解动力学方程。结果表明:受油类污染的样品比未受污染的热分解起始温度明显降低,其热分解过程主要分为两个阶段,第一个阶段的热分解动力学机理为一维扩散控制,第二个阶段的热分解动力学机制相对复杂,可能为相边界反应,圆柱形或是球形对称机理。  相似文献   

2.
SCB型钢结构防火涂料热分解动力学模型研究   总被引:1,自引:0,他引:1  
用热重法(TG)对SCB型钢结构防火涂料的热分解过程进行了分析,并用微分法中的Achar法对热分解的数据进行处理,用多种机理方程进行了拟合,发现SCB型防火涂料的热分解可分为四个阶段:第一阶段热分解属于随机核化,第二、第三、第四阶段热分解属于三维扩散,球形对称机理。  相似文献   

3.
发射药的分解机理及其安定性研究   总被引:1,自引:0,他引:1  
在研究发射药中硝酸酯的分解机理及其与发射药安定性关系的基础上,分析了热分解,水解和自动催化作用对发射药安定性的影响,以色谱法和粘度法等实验手段探索发射药安定性的变化规律,通过不同温度下发射药老化过程的动力学研究,提出了确定发射药安全使用寿命的可靠方法。  相似文献   

4.
研究了过氧化环己酮及其与溶液混合后的热分解动力学及实际包装条件下的自加速分解温度(SADT),利用差示扫描量热仪测试了过氧化环己酮及其与溶液混合后的热分解特征,得到不同升温速率下热流随时间的变化曲线,使用Friedman等转化率法对试验数据进行处理,得到了过氧化环己酮的分解反应活化能等动力学参数,并用绝热加速量热仪试验数据对动力学参数求解进行验证。推算了实际条件下达到最大温升速率时间为24 h的初始温度,基于可靠的动力学参数和有限元分析法计算了三种样品的SADT。结果表明过氧化环己酮热分解活化能随反应进程变化而变化,TMRad为24 h时的初始温度分别为53、71、66℃,实际包装条件下的SADT为37、61、56℃。  相似文献   

5.
本文用差示扫描量热仪(DSC7)测得了几种单质炸药和样品混合炸药的非等温DSC曲线,对热分解反应速率方程进行了研究,编制了由一条非等温DSC曲线的信息计算炸药热分解反应动力学参数的程序,并证明DSC的线性升温速率对动力学参数没有明显影响。  相似文献   

6.
无卤磷系阻燃环氧树脂复合材料的制备及阻燃性能研究   总被引:1,自引:0,他引:1  
采用双酚A-双(磷酸二苯酯)分别与聚磷酸铵和纳米二氧化硅复配制备新型无卤阻燃环氧树脂(EP)材料。通过氧指数、垂直燃烧和锥形量热研究环氧树脂复合体系的阻燃性能。通过热失重和电镜扫描分析对比不同阻燃体系的热分解过程及燃烧炭层结构,推测阻燃机理。  相似文献   

7.
湿度对单基发射药热分解速度的影响   总被引:2,自引:0,他引:2  
在不同湿度的条件下,用微热量热法对粉状与粒状单基发射药进行热过程测量实验,对实验结果进行了处理与分析,发现实验样品形状对单基发射药热分解特征量有一定的影响,随着湿度的增加,发射药开始加速分解的时间逐渐减短,当湿度>84%以后,开始分解的时间又快速增加,但是当湿度为92%时仍比湿度为2%的时间短,且湿度对单基发射药的峰形也有影响.  相似文献   

8.
以五氧化二磷/季戊四醇/三聚氰胺为原料合成了聚合型膨胀阻燃剂,并制备了膨胀型阻燃聚丙烯。比较和讨论了热分解动力学方法,通过测定体积流速评价了流变性,用热重分析方法研究了膨胀型阻燃聚丙烯的热分解特点。  相似文献   

9.
S-四嗪类高氮含能化合物的合成及性能   总被引:1,自引:0,他引:1       下载免费PDF全文
以3,6-对(3,5-二甲基吡唑)-S-四嗪(BT)为起始物,研究了S-四嗪类高氮含能化合物3-氨基-6-(3,5-二甲基吡唑)-S-四嗪(ADMPT)、3-肼基-6-(3,5-二甲基吡唑)-S-四嗪(HDMPT)、3,6-二氨基-S-四嗪(DATz)、3,6-二肼基-S-四嗪(DHTz)与3,3’-偶氮-(6-氨基-S-四嗪)(DAAT)的合成,经IR、元素分析、1HNMR、13CNMR等对其结构进行了表征和确认。对DHTz和DAAT的热分解性能进行了研究,由不同升温速率下的DSC实验获得了其热分解动力学参数。结果表明DAAT热稳定性好、能量高,在10℃/min升温速率下,DAAT在280℃开始分解,放热峰值330℃,放热峰的分解焓为1974.33J/g;DHTz在120℃开始分解,放热峰值159℃,放热峰的分解焓为1843.23J/g。同时,采用高温高压爆轰产物状态方程(VLW EOS)对DHTz和DAAT的爆轰性能进行了理论计算。  相似文献   

10.
利用热分析技术和锥形量热仪测试法,研究了多种阻燃剂对PVC热解和燃烧特性的影响。结果表明,由于不同种类的阻燃剂对PVC的阻燃机理不同,对PVC热解过程和燃烧特性影响各异,有的阻燃剂将PVC的初始分解温度提前,分解反应的活化能降低,使PVC提前脱水成炭,达到阻燃的目的;另一些阻燃剂显著推迟PVC的热分解,以延迟PVC的着火。从锥形量热仪的分析结果可以看出,阻燃剂的加入,使PVC的热释放速率明显降低,起到了阻燃作用。  相似文献   

11.
As a main oxidizer in solid composite propellants, ammonium perchlorate (AP) plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid com-posite propellants. To improve the performance of solid composite propellant, it is necessary to take measures to modify the thermal decomposition behavior of AP. In recent years, transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraor-dinary catalytic activity. In this review, we highlight strategies to enhance the thermal decomposition of AP by tuning morphology, varying the types of metal ion, and coupling with carbon analogue. The enhanced catalytic performance can be ascribed to synergistic effect, increased surface area, more exposed active sites, and accelerated electron transportation and so on. The mechanism of AP decom-position mixed with catalyst has also been briefly summarized. Finally, a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing.  相似文献   

12.
聚磷酸铵的合成方法分析比较   总被引:6,自引:0,他引:6  
聚磷酸铵是膨胀型阻燃剂的重要组成部分 ,而其本身所具有的高效、安全、经济等特点使得聚磷酸铵的生产成为阻燃剂发展的一个重要课题。介绍聚磷酸铵现有的生产方法 ,并对其中几种主要方法进行分析比较  相似文献   

13.
《防务技术》2022,18(10):1886-1894
Improving the thermal decomposition performance of hexanitrohexaazaisowurtzitane (CL-20) by appropriate methods is helpful to promote the combustion performance of CL-20-based solid propellants. In this study, we synthesized a sandwich structure of CL-20 and nanoporous carbon scaffolds film (NCS) and emphatically studied the thermal decomposition performance of the composite structure. Thermogravimetric analysis and differential scanning calorimetry were used to measure the thermal decomposition process of the composite structure. The kinetic parameters of thermal decomposition were calculated by the thermal dynamic analysis software AKTS. These results showed that the thermal decomposition performance of the sandwich structure of CL-20 and NCS was better than CL-20. Among the tested samples, NCS with a pore size of 15 nm had the best catalytic activity for the thermal decomposition of CL-20. Moreover, the thermal decomposition curve of the composite structure at the heating rate of 1 K/min was deconvoluted by mathematical method to study the thermal decomposition process. And a possible catalytic mechanism was proposed. The excellent thermal decomposition performance is due to the sandwich structure enhances the interface reaction of CL-20 and NCS. This work may promote the extensive use of CL-20 in the field of solid rocket propellant.  相似文献   

14.
《防务技术》2020,16(1):251-256
The hexanitrostilben (HNS) is a thermally stable explosive that can be prepared from hexanitrobibenzyl (HNBB). Therefore, the investigation of thermal stability of HNBB can be important in the yield of preparation of HNS. The decomposition kinetic of HNBB and HNS are studied by non-isothermal gravimetric method. The TG/DTG curves in non-isothermal method are obtained in range of 25°C–400 °C at heating rates of 3 °C/min, 5 °C/min, 8 °C/min, 10 °C/min and 12 °C/min. The data of weight-temperature are used for calculation of activation energy (Ea) of thermal decomposition reactions by methods of Ozawa, Kissinger, Ozawa-Flynn-Wall (OFW) and Kissinger-Akahira-Sunose (KAS) as model-free methods and Strink's equation as model-fitting method. The compensation effect is used for prediction of mechanism and determination of pre-exponential factor (lnA) of the decomposition reaction. A reduction 60 kj/mol for the average of activation energy of thermal decomposition reaction of HNBB is obtained versus HNS. This result shows the lower thermal stability of HNBB in comparison to HNS. The Avrami equation (A3/2) with function f(α) = 3/2(1-α)[-ln(1-α)]1/3 indicates the predicted mechanism for thermal decomposition reaction both explosives.  相似文献   

15.
《防务技术》2014,10(1):28-33
A differential/integral method to estimate the kinetic parameters (apparent activation energy Ea and pre-exponential factor A) for thermal decomposition reaction of energetic materials based on Kooij formula are applied to study the nonisothermal decomposition reaction kinetics of hexanitrohexaazaisowurtzitane (HNIW) by analyzing nonisothermal DSC curve data. The apparent activation energy (Ea) obtained by the integral isoconversional non-isothermal method based on Kooij formula is used to check the constancy and validity of apparent activation energy by the differential/integral method based on Kooij formula. The most probable mechanism function of thermal decomposition reaction of HNIW is determined by a logical choice method. The equations for calculating the critical temperatures of thermal explosion (Tb) and adiabatic time-to-explosion (tTIad) based on Kooij formula are used to calculate the values of Tb and tTIad to evaluate the thermal safety and heat-resistant ability of HNIW. All the original data needed for analyzing the kinetic parameters are from nonisothermal DSC curves. The results show that the kinetic model function in differential form and the values of Ea and A of decomposition reaction of HNIW are 3(1 − α)[−ln(1 − α)]2/3, 152.73 kJ mol−1 and 1011.97 s−1, respectively, and the values of self-accelerating decomposition temperature (TSADT), Tb and tTIad are 486.55 K, 493.11 K and 52.01 s, respectively.  相似文献   

16.
为满足抑爆、灭火等要求,必须对灭火、阻燃介质聚磷酸铵进行超细粉碎。为得到能满足抑爆需要的聚磷酸铵超细粉体,通过选十二烷基硫酸钠作助磨剂,采用超音速气流超细粉碎,分析并讨论了在限定条件下,不同质量分数十二烷基硫酸钠对粉体超细化的影响。确定出助磨剂最佳使用质量分数为0.3%,制得的粉体粒径主要分布在3~7μm,粉体比表面积达到普通ABC干粉灭火剂的6倍,满足抑爆要求。  相似文献   

17.
炸药热安定性的快速评定方法   总被引:2,自引:0,他引:2  
本文分析了量气法和热分析法评定炸药热安定性的问题,提出把由一条DSC曲线测得的热分解动力学参数引入热平衡方程,以数值模拟方法计算出炸药在一定环境温度下的热爆炸延滞期,并据此判别炸药热安定性的观点和方法。经实验验证,该方法快速、准确。  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号