首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the assignment of flexible servers to stations in tandem lines with service times that are not necessarily exponentially distributed. Our goal is to achieve optimal or near‐optimal throughput. For systems with infinite buffers, it is already known that the effective assignment of flexible servers is robust to the service time distributions. We provide analytical results for small systems and numerical results for larger systems that support the same conclusion for tandem lines with finite buffers. In the process, we propose server assignment heuristics that perform well for systems with different service time distributions. Our research suggests that policies known to be optimal or near‐optimal for Markovian systems are also likely to be effective when used to assign servers to tasks in non‐Markovian systems. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

2.
Scheduling a set of n jobs on a single machine so as to minimize the completion time variance is a well‐known NP‐hard problem. In this paper, we propose a sequence, which can be constructed in O(n log n) time, as a solution for the problem. Our primary concern is to establish the asymptotical optimality of the sequence within the framework of probabilistic analysis. Our main result is that, when the processing times are randomly and independently drawn from the same uniform distribution, the sequence is asymptotically optimal in the sense that its relative error converges to zero in probability as n increases. Other theoretical results are also derived, including: (i) When the processing times follow a symmetric structure, the problem has 2⌊(n−1)/2⌋ optimal sequences, which include our proposed sequence and other heuristic sequences suggested in the literature; and (ii) when these 2⌊(n−1)/2⌋ sequences are used as approximate solutions for a general problem, our proposed sequence yields the best approximation (in an average sense) while another sequence, which is commonly believed to be a good approximation in the literature, is interestingly the worst. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 373–398, 1999  相似文献   

3.
This paper deals with the stationary analysis of the finite, single server queue in discrete time. The following stntionary distributions and other quantities of practical interest are investigated: (1) the joint density of the queue length and the residual service time, (2) the queue length distribution and its mean, (3) the distribution of the residual service time and its mean, (4) the distribution and the expected value of the number of customers lost per unit of time due to saturation of the waiting capacity, (5) the distribution and the mean of the waiting time, (6) the asymptotic distribution of the queue length following departures The latter distribution is particularly noteworthy, in view of the substantial difference which exists, in general, between the distributions of the queue lengths at arbitrary points of time and those immediately following departures.  相似文献   

4.
A basic assumption in process mean estimation is that all process data are clean. However, many sensor system measurements are often corrupted with outliers. Outliers are observations that do not follow the statistical distribution of the bulk of the data and consequently may lead to erroneous results with respect to statistical analysis and process control. Robust estimators of the current process mean are crucial to outlier detection, data cleaning, process monitoring, and other process features. This article proposes an outlier‐resistant mean estimator based on the L1 norm exponential smoothing (L1‐ES) method. The L1‐ES statistic is essentially model‐free and demonstrably superior to existing estimators. It has the following advantages: (1) it captures process dynamics (e.g., autocorrelation), (2) it is resistant to outliers, and (3) it is easy to implement. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

5.
There are n customers that need to be served. Customer i will only wait in queue for an exponentially distributed time with rate λi before departing the system. The service time of customer i has distribution Fi, and on completion of service of customer i a positive reward ri is earned. There is a single server and the problem is to choose, after each service completion, which currently in queue customer to serve next so as to maximize the expected total return. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 659–663, 2015  相似文献   

6.
An approximate method for measuring the service levels of the warehouse-retailer system operating under (s, S) policy is presented. All the retailers are identical and the demand process at each retailer follows a stationary stuttering Poisson process. This type of demand process allows customer orders to be for a random number of units, which gives rise to the undershoot quantity at both the warehouse and retailer levels. Exact analyses of the distribution of the undershoot quantity and the number of orders place by a retailer during the warehouse reordering lead time are derived. By using this distribution together with probability approximation and other heuristic approaches, we model the behavior of the warehouse level. Based on the results of the warehouse level and on an existing framework from previous work, the service level at the retailer level is estimated. Results of the approximate method are then compared with those of simulation. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
The operating characteristics of (s,S) inventory systems are often difficult to compute, making systems design and sensitivity analysis tedious and expensive undertakings. This article presents a methodology for simplified sensitivity analysis, and derives approximate expressions for operating characteristics of a simple (s,S) inventory system. The operating characteristics under consideration are the expected values of total cost per period, holding cost per period, replenishment cost per period, backlog cost per period, and backlog frequency. The approximations are obtained by using least-squares regression to fit simple functions to the operating characteristics of a large number of inventory items with diverse parameter settings. Accuracy to within a few percent of actual values is typical for most approximations. Potential uses of the approximations are illustrated for several idealized design problems, including consolidating demand from several locations, and tradeoffs for increasing service or reducing replenishment delivery lead time.  相似文献   

8.
We consider a processing network in which jobs arrive at a fork‐node according to a renewal process. Each job requires the completion of m tasks, which are instantaneously assigned by the fork‐node to m task‐processing nodes that operate like G/M/1 queueing stations. The job is completed when all of its m tasks are finished. The sojourn time (or response time) of a job in this G/M/1 fork‐join network is the total time it takes to complete the m tasks. Our main result is a closed‐form approximation of the sojourn‐time distribution of a job that arrives in equilibrium. This is obtained by the use of bounds, properties of D/M/1 and M/M/1 fork‐join networks, and exploratory simulations. Statistical tests show that our approximation distributions are good fits for the sojourn‐time distributions obtained from simulations. © 2008 Wiley Periodicals, Inc. Naval Research Logistics, 2008  相似文献   

9.
This paper focuses on certain types of distribution networks in which commodity flows must go through connections that are subject to congestion. Connections serve as transshipment and/or switching points and are modeled as M/G/1 queues. The goal is to select connections, assign flows to the connections, and size their capacities, simultaneously. The capacities are controlled by both the mean and the variability of service time at each connection. We formulate this problem as a mixed integer nonlinear optimization problem for both the fixed and variable service rate cases. For the fixed service rate case, we prove that the objective function is convex and then develop an outer approximation algorithm. For the variable service rate case, both mean and second moment of service time are decision variables. We establish that the utilization rates at the homogeneous connections are identical for an optimal solution. Based on this key finding, we develop a Lagrangian relaxation algorithm. Numerical experiments are conducted to verify the quality of the solution techniques proposed. The essential contribution of this work is the explicit modeling of connection capacity (through the mean and the variability of service time) using a queueing framework. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

10.
We present a service constrained (Q, r) model that minimizes expected holding and ordering costs subject to an upper bound on the expected waiting time of demands that are actually backordered. We show that, after optimizing over r, the average cost is quasiconvex in Q for logconcave continuous lead time demand distributions. For logconcave discrete lead time demand distributions we find a single‐pass efficient algorithm based on a novel search stopping criterion. The algorithm also allows for bounds on the variability of the service measure. A brief numerical study indicates how the bounds on service impact the optimal average cost and the optimal (Q, r) choice. The discrete case algorithm can be readily adapted to provide a single pass algorithm for the traditional model that bounds the expected waiting time of all demands (backordered or not). © 2002 Wiley Periodicals, Inc. Naval Research Logistics 49: 557–573, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/nav.10028  相似文献   

11.
We consider the problem of scheduling multiprocessor tasks with prespecified processor allocations to minimize the total completion time. The complexity of both preemptive and nonpreemptive cases of the two-processor problem are studied. We show that the preemptive case is solvable in O(n log n) time. In the nonpreemptive case, we prove that the problem is NP-hard in the strong sense, which answers an open question mentioned in Hoogeveen, van de Velde, and Veltman (1994). An efficient heuristic is also developed for this case. The relative error of this heuristic is at most 100%. © 1998 John Wiley & Sons, Inc. Naval Research Logistics 45: 231–242, 1998  相似文献   

12.
Manufacturing and service organizations routinely face the challenge of scheduling jobs, orders, or individual customers in a schedule that optimizes either (i) an aggregate efficiency measure, (ii) a measure of performance balance, or (iii) some combination of these two objectives. We address these questions for single-machine job scheduling systems with fixed or controllable due dates. We show that a large class of such problems can be optimized by solving either a single instance or a finite sequence of instances of the so-called (SQC) problem, in which the sum of general quasiconvex functions of the jobs' completion times is to be minimized. To solve a single instance of (SQC), we develop an efficient, though pseudopolynomial algorithm, based on dynamic programming. The algorithm generates a solution that is optimal among all schedules whose starting time is restricted to the points of a prespecified (arbitrary) grid. The algorithm is embedded in an iterative procedure, where in each iteration a specific instance of (SQC) is solved. Special attention is given to the simultaneous minimization of the mean and variance of completion times. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
Considered is a two-level inventory system with one central warehouse and N retailers facing different independent compound Poisson demand processes. The retailers replenish from the warehouse and the warehouse from an outside supplier. All facilities apply continuous review installation stock (R, Q) policies with different reorder points and batch quantities. Presented is a new approximate method for evaluation of holding and shortage costs, which can be used to select optimal policies. The accuracy of the approximation is evaluated by comparison with exact and simulated results. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
A U‐line arranges tasks around a U‐shaped production line and organizes them into stations that can cross from one side of the line to the other. In addition to improving visibility and communication between operators on the line, which facilitates problem‐solving and quality improvement, U‐lines can reduce the total number of operators required on the line and make rebalancing the line easier compared to the traditional, straight production line. This paper studies the (type 1) U‐line balancing problem when task completion times are stochastic. Stochastic completion times occur when differences between operators cause completion times to vary somewhat and when machine processing times vary. A recursive algorithm is presented for finding the optimal solution when completion times have any distribution function. An equivalent shortest path network is also presented. An improvement for the special case of normally distributed task completion times is given. A computational study to determine the characteristics of instances that can be solved by the algorithms shows that they are able to solve instances of practical size (like the 114 Japanese and U.S. U‐lines studied in a literature review paper). © 2002 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

15.
A classical and important problem in stochastic inventory theory is to determine the order quantity (Q) and the reorder level (r) to minimize inventory holding and backorder costs subject to a service constraint that the fill rate, i.e., the fraction of demand satisfied by inventory in stock, is at least equal to a desired value. This problem is often hard to solve because the fill rate constraint is not convex in (Q, r) unless additional assumptions are made about the distribution of demand during the lead‐time. As a consequence, there are no known algorithms, other than exhaustive search, that are available for solving this problem in its full generality. Our paper derives the first known bounds to the fill‐rate constrained (Q, r) inventory problem. We derive upper and lower bounds for the optimal values of the order quantity and the reorder level for this problem that are independent of the distribution of demand during the lead time and its variance. We show that the classical economic order quantity is a lower bound on the optimal ordering quantity. We present an efficient solution procedure that exploits these bounds and has a guaranteed bound on the error. When the Lagrangian of the fill rate constraint is convex or when the fill rate constraint does not exist, our bounds can be used to enhance the efficiency of existing algorithms. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 635–656, 2000  相似文献   

16.
提出了一种基于图形处理单元(graphic processing unit, GPU)的5G软件无线电准循环低密度奇偶校验(low density parity check, LDPC)码译码器,为了节省片上和片下带宽,采用码字缩短和打孔技术、两级量化和数据打包方案,以提升数据带宽的利用率。实验基于Nvidia RTX 2080Ti GPU平台实现了高码率情况下的最小和近似译码算法的并行译码,通过分析GPU上的最优线程设置,将码率为5/6的(2 080,1 760) LDPC算法的译码吞吐率提升至1.38 Gbit/s,译码吞吐率性能优于现有其他基于GPU的LDPC译码器。  相似文献   

17.
This paper considers the problem of computing E(X?n; X > t) when X is a normal variate having the property that the mean is substantially larger than the standard deviation. An approximation is developed which is determined from the mean, standard deviation, and the cumulative standard normal distribution. Computations comparing the approximate moments with the actual are reported for various values of the relevant parameters. These results are applied to the problem of computing the expected number of shortages in a lead-time for a single product which exhibits continuous exponential decay.  相似文献   

18.
Under a free-replacement warranty of duration W, the customer is provided, for an initial cost of C, as many replacement items as needed to provide service for a period W. Payments of C are not made at fixed intervals of length W, but in random cycles of length Y = W + γ(W), where γ(W) is the (random) remaining life-time of the item in service W time units after the beginning of a cycle. The expected number of payments over the life cycle, L, of the item is given by MY(L), the renewal function for the random variable Y. We investigate this renewal function analytically and numerically and compare the latter with known asymptotic results. The distribution of Y, and hence the renewal function, depends on the underlying failure distribution of the items. Several choices for this distribution, including the exponential, uniform, gamma and Weibull, are considered.  相似文献   

19.
In this paper we study a machine repair problem in which a single unreliable server maintains N identical machines. The breakdown times of the machines are assumed to follow an exponential distribution. The server is subject to failure and the failure times are exponentially distributed. The repair times of the machine and the service times of the repairman are assumed to be of phase type. Using matrix‐analytic methods, we perform steady state analysis of this model. The time spent by a failed machine in service and the total time in the repair facility are shown to be of phase type. Several performance measures are evaluated. An optimization problem to determine the number of machines to be assigned to the server that will maximize the expected total profit per unit time is discussed. An illustrative numerical example is presented. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 462–480, 2003  相似文献   

20.
Two formulae are presented for calculating expected time-weighted backorders over a fixed time interval. One formula is a more precise form of a result found in the literature and is found using a direct intuitive approach. The second formula is derived using the steady. State distribution of inventory and is directly compatible with the use of steady-state (R, Q) models. The two formulae are compared and reconciled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号