首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
《防务技术》2015,11(3)
The heat treatable aluminum-copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-toweight ratio and good ductility. Friction stir welding(FSW) process, an emerging solid state joining process, is suitable for joining this alloy compared to fusion welding processes. This work presents the formulation of a mathematical model with process parameters and tool geometry to predict the responses of friction stir welds of AA 2014-T6 aluminum alloy, viz yield strength, tensile strength and ductility. The most influential process parameters considered are spindle speed, welding speed, tilt angle and tool pin profile. A four-factor, five-level central composite design was used and a response surface methodology(RSM) was employed to develop the regression models to predict the responses.The mechanical properties, such as yield strength(YS), ultimate tensile strength(UTS) and percentage elongation(%El), are considered as responses. Method of analysis of variance was used to determine the important process parameters that affect the responses. Validation trials were carried out to validate these results. These results indicate that the friction stir welds of AA 2014-T6 aluminum alloy welded with hexagonal tool pin profile have the highest tensile strength and elongation, whereas the joints fabricated with conical tool pin profile have the lowest tensile strength and elongation.  相似文献   

2.
定应变作用下NEPE推进剂老化特性及寿命预估研究   总被引:2,自引:0,他引:2  
为考察定应变作用下NEPE推进剂的老化特性,研究了20%定应变作用下NEPE推进剂贮存老化过程中力学性能、凝胶性能和界面性能的变化.研究结果表明:定应变作用下NEPE推进剂在贮存老化过程中最大抗拉强度降低,最大延伸率变化较小,其老化失效主要表现为强度的失效;定应变下NEPE推进剂的凝胶百分数和粘附功随老化时间的延长而降低,NEPE推进剂粘合剂基体的降解断裂和界面的"脱湿"是其主要的老化机理;定应变下NEPE推进剂的力学性能与细观性能的相关性研究表明,最大抗拉强度与凝胶百分数和粘附功存在相关关系,计算了其关系式,建立了由细观性能评估推进剂宏观力学性能的方法;选择最大抗拉强度下降30%时失效,20%定应变下NEPE推进剂的贮存寿命为8.3年.  相似文献   

3.
《防务技术》2015,11(2)
The present study is to optimize the process parameters for friction welding of duplex stainless steel(DSS UNS S32205).Experiments were conducted according to central composite design.Process variables,as inputs of the neural network,included friction pressure,upsetting pressure,speed and burn-off length.Tensile strength and microhardness were selected as the outputs of the neural networks.The weld metals had higher hardness and tensile strength than the base material due to grain refinement which caused failures away from the joint interface during tensile testing.Due to shorter heating time,no secondary phase intermetallic precipitation was observed in the weld joint.A multi-layer perceptron neural network was established for modeling purpose.Five various training algorithms,belonging to three classes,namely gradient descent,genetic algorithm and LevenbergeM arquardt,were used to train artificial neural network.The optimization was carried out by using particle swarm optimization method.Confirmation test was carried out by setting the optimized parameters.In conformation test,maximum tensile strength and maximum hardness obtained are 822 MPa and 322 Hv,respectively.The metallurgical investigations revealed that base metal,partially deformed zone and weld zone maintain austenite/ferrite proportion of 50:50.  相似文献   

4.
《防务技术》2020,16(2):439-446
In order to study the cross-linking density and aging constitutive relationship of HTPB coating during storage, the thermal accelerated aging tests at 0%, 3%, 6% and 9% prestrains were carried out. The cross-linking density of HTPB coating at different aging stages were tested using low-field 1H NMR and the variation of cross-linking density was analyzed. The aging model of cross-linking density considering the chemical aging and the physical stretching factors was established. The uniaxial tensile tests were carried out on HTPB coating at different aging stages and the cross-linking density was introduced into Ogden hyperelastic constitutive model as a characterization parameter of correction coefficient. Combined with uniaxial tensile test results, a prestrain aging constitutive model of HTPB coating was established. The results show that the cross-linking density of HTPB coating increases rapidly at first and then slowly with the increase of thermal accelerated aging time without prestrain. Under prestrain conditions, the cross-linking density of HTPB coating decreases at the early stage, and increases rapidly at first and then slowly at the middle and late stages of thermal accelerated aging. The correlation coefficients of aging model of cross-linking density and aging constitutive model with test results are R > 0.9500 and R > 0.9900 respectively, which can be used to accurately describe the cross-linking density and aging constitutive relationship of HTPB coating under prestrain accelerated thermal aging conditions.  相似文献   

5.
《防务技术》2015,11(3)
Surface modification is essential for improving the service properties of components. Cladding is one of the most widely employed methods of surface modification. Friction surfacing is a candidate process for depositing the corrosion resistant coatings. Being a solid state process, it offers several advantages over conventional fusion based surfacing process. The aim of this work is to identify the relationship between the input variables and the process response and develop the predictive models that can be used in the design of new friction surfacing applications. In the current work, austenitic stainless steel AISI 304 was friction surfaced on high strength low alloy steel substrate. Friction surfacing parameters,such as mechtrode rotational speed, feed rate of substrate and axial force on mechtrode, play a major role in determining the pitting corrosion resistance and bond strength of friction surfaced coatings. Friction surfaced coating and base metal were tested for pitting corrosion by potentiodynamic polarization technique. Coating microstructure was characterized using optical microscopy, scanning electron microscopy and X-ray diffraction. Coatings in the as deposited condition exhibited strain-induced martensite in austenitic matrix. Pitting resistance of surfaced coatings was found to be much lower than that of mechtrode material and superior to that of substrate. A central composite design with three factors(mechtrode rotational speed, substrate traverse speed, axial load on mechtrode) and five levels was chosen to minimize the number of experimental conditions. Response surface methodology was used to develop the model. In the present work, an attempt has been made to develop a mathematical model to predict the pitting corrosion resistance and bond strength by incorporating the friction surfacing process parameters.  相似文献   

6.
为获得最佳铝热焊接工艺参数,对拉伸试件进行了正交试验和二次通用旋转组合试验,研究预热温度、加压时间和预留焊缝3因素对接头强度的影响,进而寻求一组使焊接接头强韧性最高的焊接工艺参数组合。利用电子显微镜等对试件拉伸断口进行了分析,通过对比2种开始加压时间下试件的显微组织和性能,研究了这2种方法对接头强韧性的影响。结果表明:采用设计的铝热焊接试验装置和优化出的随焊加压致密化工艺参数,可使焊接接头获得大变形组织,从而获得高的强度和韧性。该项研究可为提高铝热焊接质量提供基础数据。  相似文献   

7.
《防务技术》2019,15(3):450-456
The aim of this research study was to determine optimal resistance spot brazing parameters for joining between AHSS and AISI 304 stainless steel by using filler metal. The key parameters investigated in this study consist of the brazing current, electrode pressure and brazing time. The Taguchi method was applied to the design of experiments. Signal-to-Noise ratio was introduced in the study to identify optimal levels from the process where input parameters yield increased shear strength. Brazing was thus implemented with 5,000A brazing current, 0.70 MPa electrode pressure, and 1.50s brazing time. The maximum shear strength obtained was 54.31 N·mm−2 in accordance with input parameter settings. In addition, Cu-rich phase and Ag0.4Fe0.6 intermetallic phases were found at the interface zone.  相似文献   

8.
《防务技术》2015,11(3)
The present work pertains to the study on joining of AA6061 and AISI 4340 through continuous drive friction welding. The welds were evaluated by metallographic examination, X-ray diffraction, electron probe microanalysis, tensile test and microhardness. The study reveals that the presence of an intermetallic compound layer at the bonded interface exhibits poor tensile strength and elongation. Mg in AA6061 near to the interface is found to be favourable for the formation and growth of Fe2Al5 intermetallics. Introduction of silver as an interlayer through electroplating on AISI 4340 resulted in accumulation of Si at weld interface, replacing Mg at AA6061 side, thereby reducing the width of intermetallic compound layer and correspondingly increasing the tensile strength. Presence of silver at the interface results in partial replacement of Fe-Al based intermetallic compounds with Ag-Al based compounds. The presence of these intermetallics was confirmed by X-ray diffraction technique. Since Ag-Al phases are ductile in nature, tensile strength is not deteriorated and the silicon segregation at weld interface on AA6061 in the joints with silver interlayer acts as diffusion barrier for Fe and further avoids formation of Fe-Al based intermetallics. A maximum tensile strength of 240 MPa along with 4.9% elongation was obtained for the silver interlayer dissimilar metal welds. The observed trends in tensile properties and hardness were explained in relation to the microstructure.  相似文献   

9.
In order to accurately describe the transverse relaxation characteristic and stress relaxation modulus of HTPB coating during pre-strain thermal aging process, a one month thermal aging test was carried out at 70 C with pre-strain of 0%, 3%, 6% and 9%, respectively. The low-field 1H NMR and stress relaxation modulus tests were carried out for HTPB coating at different aging stages. The stress relaxation model considering the molecular chains was proposed according to the changes of crosslinking chain and dangling chain of HTPB coating during pre-strain aging. The results showed that with the increase of aging time, the decay rate of transverse relaxation curve became faster, the transverse relaxation time decreased, the value of combined parameter qMrl increased, the proportion of crosslinking chain decreased, while the proportion of dangling chain increased. Moreover, the stress relaxation modulus increased, the crosslinking network structure of HTPB coating became denser and the degree of cross-linking increased. At the initial aging stage, the pre-strain will destroy the crosslinking network structure of HTPB coating to a certain extent. With the increase of aging time, the effect of pre-strain will gradually weaken and the influence of aging on materials will gradually increase. The correlations between the stress relaxation model considering the molecular chains and the test results were more than 0.9950, which can accurately describe the stress relaxation modulus of HTPB coating during the pre-strain thermal aging process.  相似文献   

10.
In order to study the influences of confining pressure and strain rate on the mechanical properties of the Nitrate Ester Plasticized Polyether (NEPE) propellant, uniaxial tensile tests were conducted using the self-made confining pressure system and material testing machine. The stress-strain responses of the NEPE propellant under different confining pressure conditions and strain rates were obtained and analyzed. The results show that confining pressure and strain rate have a remarkably influence on the mechanical responses of the NEPE propellant. As confining pressure increases (from 0 to 5.4 MPa), the maximum tensile stress and ultimate strain increase gradually. With the coupled effects of confining pressure and strain rate, the value of the maximum tensile stress and ultimate strain at 5.4 MPa and 0.0667 s−1 is 2.03 times and 2.19 times of their values under 0 MPa and 0.00333 s−1, respectively. Afterwards, the influence mechanism of confining pressure on the NEPE propellant was analyzed. Finally, based on the viscoelastic theory and continuous damage theory, a nonlinear constitutive model considering confining pressure and strain rate was developed. The damage was considered to be rate-dependent and pressure-dependent. The constitutive model was validated by comparing experimental data with predictions of the constitutive model. The whole maximum stress errors of the model predictions are lower than 4% and the corresponding strain errors are lower than 7%. The results show that confining pressure can suppress the damage initiation and evolution of the NEPE propellant and the nonlinear constitutive model can describe the mechanical responses of the NEPE propellant under various confining pressure conditions and strain rates. This research can lay a theoretical foundation for analyzing the structural integrity of propellant grain accurately under working pressure loading.  相似文献   

11.
In order to predict the storage life of a certain type of HTPB (hydroyl-terminated polybutadiene) coating at 25 C and analyze the influence of pre-strain on the storage life, the accelerated aging tests of HTPB coating at 40 C, 50 C, 60 C, 70 C with the pre-strain of 0%, 3%, 6%, 9%, respectively were carried out. The variation regularity of the change of crosslinking density was analyzed and the aging model of HTPB coating under pre-strained thermally-accelerated aging was proposed. The storage life of HTPB coating at 25 C was estimated by using the Berthelot equation as the end point of the aging life with a 30% decrease in maximum elongation. The results showed that the change of crosslinking density of HTPB coating increased with the increase of aging temperature and aging time, and decreased with the in-crease of pre-strain. Under 0% pre-strain, the relationship between the change of crosslinking density of HTPB coating and the aging time can be described by the logarithmic model with the confidence probability greater than 99%.The stress relaxation phenomenon existed under 3%, 6% and 9% pre-strained aging. The aging model considering chemical aging and pre-strain was established with the confidence probability greater than 90%. The storage life of HTPB coating was 15.2935 years at 25 C under 0% pre-strain, which was reduced by 13.9007%, 75.6949% and 89.7859% under 3%, 6% and 9% pre-strain, respectively. The existence of pre-strain has a serious impact on the storage life of HTPB coating, therefore, the pre-strain should be avoided as much as possible during the actual storage.  相似文献   

12.
应用四相模型法研究含片状夹杂复合共晶体的细观应力场.在基体、界面相和片状夹杂为各向同性的条件下,得到细观应力分布规律,并表现出明显的尺度效应.应用位错塞积理论研究片状夹杂内的位错运动,通过两相界面处位错塞积产生的应力集中确定其在基体内产生的最大张应力,导致基体首先被破坏失效,当基体内最大张应力等于分子理论的断裂强度时,得到共晶体断裂强度的理论表达式.结果表明:含片状夹杂共晶复合陶瓷强度随夹杂厚度增加而减小.  相似文献   

13.
为探究火箭武器储运发射箱长期储存的蠕变性能,制备复合材料层压板并开展单轴拉伸蠕变试验,获得了单向纤维复合材料主方向的蠕变本构模型参数。采用有限元方法并借助用户自定义材料子程序建立储运发射箱长期储存蠕变的数值分析模型,预测了堆码储存15年后底层发射箱的蠕变变形。以储存后的发射箱作为初始状态建立弹管耦合发射动力学仿真计算模型,进一步分析蠕变对火箭弹发射过程的影响。仿真结果表明:蠕变引起的定向器平行度和发射箱底面平面度的变化均小于技术指标规定值,定向器束的最大残余变形在三维空间内呈马鞍状分布,上、下两行中间位置定向器的变形最大,左、右两列中间位置定向器的变形最小。定向器蠕变变形使得弹管间隙减小,火箭弹在管内运动使弹管之间的动态接触碰撞力增大,离轨速度降低。  相似文献   

14.
The factors which cause additional losses of guidance optical fiber in wound state were analyzed.A mathematical model used to analyze the macro-bend losses in the cross region producing in the precision winding process was established.For an actual guidance optical fiber,the measured data of the fiber's additional losses under low temperature and the loss curves with radius were given in the paper.The simulation results were compared with the test data.It shows that the additional losses of optical fiber caused by bending and low temperature can meet the actual requirements of the fiber optical guidance system.The established model can be used to predict the change trend of fiber losses in the winding process with a certain tensile force.  相似文献   

15.
分析了高温作用下混凝土内部发生的物理化学变化及其对混凝土力学性能产生的影响.通过对国内外部分混凝土高温力学性能试验成果总结分析,得到了混凝土高温作用后抗压强度、抗拉强度及弹性模量等力学性能的劣化规律.在对混凝土高温数学模型进行总结归纳的基础上,深入探讨了不同模型的特点以及存在的不足,为进一步研究混凝土结构的高温力学性能...  相似文献   

16.
基于信号流图的捕获模型分析   总被引:1,自引:0,他引:1  
本文利用信号流图分析法建立了适合中低速跳获方案的数学模型,推导了该方案的平均捕获时间计算式。通过对数学模型及模拟结果的分析,证明了本文推导过程的正确性。本文的研究对中低速跳频电台的性能指标确定,提供了理论依据。  相似文献   

17.
测试了国产T300级碳纤维的单丝和复丝拉伸强度,并用Weibull分布来描述碳纤维单丝平均拉伸强度。采用拉挤工艺制备出国产碳纤维复合线芯,测试了国产碳纤维复合线芯的弯曲强度和短梁剪切强度性能。结果表明:国产T300级碳纤维单丝拉伸强度性能达到东丽T300碳纤维水平,且分散性更小;复丝强度略低。国产T300级碳纤维集束性较差,在拉挤抽纱过程中,容易夹纱和起毛。在纤维体积含量基本相同情况下,国产T300级碳纤维复合线芯力学性能与东丽T700碳纤维复合线芯力学性能相差不大。  相似文献   

18.
燃烧室压力对潜入式喷管喉衬热应力的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究燃烧室压力对固体火箭发动机潜入式喷管热应力影响规律的问题,采用商业流体软件,基于压力求解器,求解了喷管纯气相的流场,确定了燃气温度、压力、壁面对流换热系数;采用有限元软件,依据流场计算的非均布壁面压力与非均布对流换热,求解了燃烧室压力为6 MPa下的潜入式喷管热结构问题;通过地面点火试验验证了仿真模型与数值方法的有效性与准确性;采用相同计算模型与数值方法,求解了在燃烧室压力为9 MPa、12 MPa下的喷管热结构问题,揭示了燃烧室压力对喉衬热应力的影响规律。结果表明:整个工作过程,喉衬环向应力最大值为103.9 MPa,位于内表面,且随时间增大,先增大后减小;喉衬环向拉应力也随时间先增大后减小;随压力增大,对流换热系数增大,喉衬温度升高,喉衬环向拉应力增大,喉衬环向压应力减小。  相似文献   

19.
为简化指控系统解算流程,缩短指控系统解算尾流自导鱼雷带角射击参数时间,为后续的鱼雷模拟器的软件研制提供实现手段,提出在尾流自导鱼雷有利提前角射击弹道的基础上进行二次转角航行的改进的尾流自导鱼雷带角射击模型。依据尾流自导鱼雷射击原理,结合有利提前角射击和二次转角射击,对所提出的模型及其约束条件进行了分析与推导,简化了鱼雷带角射击参数的解算。深入分析了尾流自导鱼雷带角射击逻辑,提出采用面向过程设计方法对模型进行仿真,经过对仿真输出图形和仿真数据的分析,验证了所提出模型的准确性。  相似文献   

20.
基于ANSYS的大型复合材料风力机叶片结构分析   总被引:3,自引:0,他引:3       下载免费PDF全文
基于ANSYS软件,对某款应用于GL3A风场的1500kW大型复合材料风力机叶片进行了结构分析。分析结果表明:该叶片的振型以一阶挥舞和一阶摆振为主,其频率分别为0.86Hz和1.59Hz;在极限挥舞载荷作用下,该叶片有限元模型计算得到的叶尖挠度为8.445m,而该叶片全尺寸静力试验得到的极限挥舞载荷作用下的叶尖挠度为8.12m,计算值与试验值的误差只有3.8%;另外,该叶片的最大计算拉应力和压应力分别为228MPa和201MPa,而该叶片玻纤/环氧复合材料实测拉伸强度和实测压缩失稳强度分别为720MPa和380MPa,其计算最大应力只有对应实测极限强度的31.7%和52.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号