首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 341 毫秒
1.
We study an (R, s, S) inventory control policy with stochastic demand, lost sales, zero lead‐time and a target service level to be satisfied. The system is modeled as a discrete time Markov chain for which we present a novel approach to derive exact closed‐form solutions for the limiting distribution of the on‐hand inventory level at the end of a review period, given the reorder level (s) and order‐up‐to level (S). We then establish a relationship between the limiting distributions for adjacent values of the reorder point that is used in an efficient recursive algorithm to determine the optimal parameter values of the (R, s, S) replenishment policy. The algorithm is easy to implement and entails less effort than solving the steady‐state equations for the corresponding Markov model. Point‐of‐use hospital inventory systems share the essential characteristics of the inventory system we model, and a case study using real data from such a system shows that with our approach, optimal policies with significant savings in inventory management effort are easily obtained for a large family of items.  相似文献   

2.
Models are formulated for determining continuous review (Q, r) policies for a multiitem inventory subject to constraints. The objective function is the minimization of total time-weighted shortages. The constraints apply to inventory investment and reorder workload. The formulations are thus independent of the normal ordering, holding, and shortage costs. Two models are presented, each representing a convex programming problem. Lagrangian techniques are employed with the first, simplified model in which only the reorder points are optimized. In the second model both the reorder points and the reorder quantities are optimized utilizing penalty function methods. An example problem is solved for each model. The final section deals with the implementation of these models in very large inventory systems.  相似文献   

3.
A classical and important problem in stochastic inventory theory is to determine the order quantity (Q) and the reorder level (r) to minimize inventory holding and backorder costs subject to a service constraint that the fill rate, i.e., the fraction of demand satisfied by inventory in stock, is at least equal to a desired value. This problem is often hard to solve because the fill rate constraint is not convex in (Q, r) unless additional assumptions are made about the distribution of demand during the lead‐time. As a consequence, there are no known algorithms, other than exhaustive search, that are available for solving this problem in its full generality. Our paper derives the first known bounds to the fill‐rate constrained (Q, r) inventory problem. We derive upper and lower bounds for the optimal values of the order quantity and the reorder level for this problem that are independent of the distribution of demand during the lead time and its variance. We show that the classical economic order quantity is a lower bound on the optimal ordering quantity. We present an efficient solution procedure that exploits these bounds and has a guaranteed bound on the error. When the Lagrangian of the fill rate constraint is convex or when the fill rate constraint does not exist, our bounds can be used to enhance the efficiency of existing algorithms. © 2000 John Wiley & Sons, Inc. Naval Research Logistics 47: 635–656, 2000  相似文献   

4.
Inventory control of products with finite lifetimes is important in many modern business organizations. It has been an important and difficult research subject. Here, we study the (s, S) continuous review model for items with an exponential random lifetime and a general renewal demand process through a Markov process. We derive a fundamental rate conservation theorem and show that all the other system performance measures can be obtained easily through the expected reorder cycle length. This leads to a simple expression for the total expected long run cost rate function in terms of the expected reorder cycle length. Subsequently, we derive formulas for computing the expected cycle lengths for the general renewal demand as well as for a large class of demands characterized by the phase type interdemand time distribution. We show analytically when the cost as a function of the reorder level is monotone, concave, or convex. We also show analytically that, depending on the behavior of the expected reorder cycle, the cost as a function of the order‐up level is either monotone increasing or unimodal. These analytical properties enable us to understand the problem and make the subsequent numerical optimization much easier. Numerical studies confirm and illustrate some of the analytical properties. The results also demonstrate the impact of various parameters on the optimal policy and the cost. © 1999 John Wiley & Sons, Inc. Naval Research Logistics 46: 39–56, 1999  相似文献   

5.
This study concentrates on distributions of leadtime demand that permit explicit solution to the lot-size, reorder point model. The optimal order size for the general case is first expressed as a function of the economic order quantity and a quantity known as the “residual mean life” in reliability theory. The concept of “no aging” is then utilized to identify a broad class of distributions for which the optimal order size can be determined explicitly, independent of the reorder point.  相似文献   

6.
This paper is concerned with the optimum decision variables found using order quantity, reorder point (Q, R) inventory models. It examines whether the optimum variables (Q* and R*) are necessarily monotonic functions of the backorder cost parameter (or equivalently of the performance objective). For a general class of models it is proved that R* must increase as the performance objective is raised, and an inequality condition is derived which governs how Q* will change. Probability distributions of lead time demand are cited or found for which Q* increases, Q* decreases, and Q* is independent of increases in performance objectives or backorder cost parameter.  相似文献   

7.
This paper describes an empirical evaluation of several approximations to Hadley and Whitin's approximate continuous review inventory model with backorders. It is assumed that lead time demand is normally distributed and various exponential functions are used to approximate the upper tail of this distribution. These approximations offer two important advantages in computing reorder points and reorder quantities. One advantage is that normal tables are no longer required to obtain solutions, and a second advantage is that solutions may be obtained directly rather than iteratively. These approximations are evaluated on two distinct inventory systems. It is shown that an increase in average annual cost of less that 1% is expected as a result of using these approximations. The only exception to this statement is with inventory systems in which a high shortage cost is specified and ordering costs are unusually low.  相似文献   

8.
In this study, we propose a new parsimonious policy for the stochastic joint replenishment problem in a single‐location, N‐item setting. The replenishment decisions are based on both group reorder point‐group order quantity and the time since the last decision epoch. We derive the expressions for the key operating characteristics of the inventory system for both unit and compound Poisson demands. In a comprehensive numerical study, we compare the performance of the proposed policy with that of existing ones over a standard test bed. Our numerical results indicate that the proposed policy dominates the existing ones in 100 of 139 instances with comparably significant savings for unit demands. With batch demands, the savings increase as the stochasticity of demand size gets larger. We also observe that it performs well in environments with low demand diversity across items. The inventory system herein also models a two‐echelon setting with a single item, multiple retailers, and cross docking at the upper echelon. © 2006 Wiley Periodicals, Inc. Naval Research Logistics, 2006  相似文献   

9.
This paper considers the problem of computing reorder points and order quantities for continuous review inventory systems subject to either a service level constraint or a constraint on the average fraction of time out of stock. It is demonstrated that three apparently distinct models are equivalent under these circumstances. Using this equivalence, streamlined algorithms for computed lot sizes and recorder points are developed.  相似文献   

10.
An inventory system is described in which demand information may be incorrectly transmitted from the field to the stocking point. The stocking point employs a forwarding policy which attempts to send out to the field a quantity which, in general, is some function of the observed demand. The optimal ordering rules for the general n-period problem and the steady state case are derived. In addition orderings of the actual reorder points as functions of the errors are presented, as well as some useful economic interpretations and numerical illustrations.  相似文献   

11.
We perform a sensitivity analysis of the Euclidean, single-facility minisum problem, which is also known as the Weber problem. We find the sensitivity of the optimal site of the new facility to changes in the locations and weights of the demand points. We apply these results to get the optimal site if some of the parameters in the problem are changed. We also get approximate formulas for the set of all possible optimal sites if demand points are restricted to given areas, and weights must be within given ranges, which is a location problem under conditions of uncertainty.  相似文献   

12.
The purpose of this paper and the accompanying tables is to facilitate the calculation of constrained optimum order quantities and reorder points for an inventory control system where the criterion of optimality is the minimization of expected inventory holding, ordering, and time-weighted backorder costs. The tables provided in the paper allow the identification of the optimal solution when order quantities and/or reorder points are restricted to a set of values which do not include the unconstrained optimal solution.  相似文献   

13.
We consider the problem of determining the capacity to assign to each arc in a given network, subject to uncertainty in the supply and/or demand of each node. This design problem underlies many real‐world applications, such as the design of power transmission and telecommunications networks. We first consider the case where a set of supply/demand scenarios are provided, and we must determine the minimum‐cost set of arc capacities such that a feasible flow exists for each scenario. We briefly review existing theoretical approaches to solving this problem and explore implementation strategies to reduce run times. With this as a foundation, our primary focus is on a chance‐constrained version of the problem in which α% of the scenarios must be feasible under the chosen capacity, where α is a user‐defined parameter and the specific scenarios to be satisfied are not predetermined. We describe an algorithm which utilizes a separation routine for identifying violated cut‐sets which can solve the problem to optimality, and we present computational results. We also present a novel greedy algorithm, our primary contribution, which can be used to solve for a high quality heuristic solution. We present computational analysis to evaluate the performance of our proposed approaches. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 236–246, 2016  相似文献   

14.
Using Markov renewal theory, we derive analytic expressions for the expected average cost associated with (s, S) policies for a continuous review inventory model with a compound Poisson demand process and stochastic lead time, under the (restrictive) assumption that only one order can be outstanding.  相似文献   

15.
We present a robust optimization model for production planning under the assumption that electricity supply is subject to uncertain interruptions caused by participation in interruptible load contracts (ILCs). The objective is to minimize the cost of electricity used for production while providing a robust production plan which ensures demand satisfaction under all possible interruption scenarios. The combinatorial size of the set of interruption scenarios makes this a challenging problem. Furthermore, we assume that no probabilistic information is known about the supply uncertainty: we only use the information given in the ILC to identify an uncertainty set that captures the possible scenarios. We construct a general robust framework to handle this uncertainty and present a heuristic to compute a good feasible solution of the robust model. We provide computational experiments on a real‐world example and compare the performance of an exact solver applied to the robust model with that of the heuristic procedure. Finally, we include the operational impact of interruptions such as “recovery modes” in the definition of the uncertainty set. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

16.
Consider a repeated newsvendor problem for managing the inventory of perishable products. When the parameter of the demand distribution is unknown, it has been shown that the traditional separated estimation and optimization (SEO) approach could lead to suboptimality. To address this issue, an integrated approach called operational statistics (OS) was developed by Chu et al., Oper Res Lett 36 (2008) 110–116. In this note, we first study the properties of this approach and compare its performance with that of the traditional SEO approach. It is shown that OS is consistent and superior to SEO. The benefit of using OS is larger when the demand variability is higher. We then generalize OS to the risk‐averse case under the conditional value‐at‐risk (CVaR) criterion. To model risk from both demand sampling and future demand uncertainty, we introduce a new criterion, called the total CVaR, and find the optimal OS under this new criterion. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 206–214, 2015  相似文献   

17.
As a complex system with multiple components usually deteriorates with age, preventive maintenance (PM) is often performed to keep the system functioning in a good state to prolong its effective age. In this study, a nonhomogeneous Poisson process with a power law failure intensity is used to describe the deterioration of a repairable system, and the optimal nonperiodic PM schedule can be determined to minimize the expected total cost per unit time. However, since the determination of such optimal PM policies may involve numerous uncertainties, which typically make the analyses difficult to perform because of the scarcity of data, a Bayesian decision model, which utilizes all available information effectively, is also proposed for determining the optimal PM strategies. A numerical example with a real failure data set is used to illustrate the effectiveness of the proposed approach. The results show that the optimal schedules derived by Bayesian approach are relatively more conservative than that for non‐Bayesian approach because of the uncertainty of the intensity function, and if the intensity function are updated using the collected data set, which indicates more severe deterioration than the prior belief, replacing the entire system instead of frequent PM activities before serious deterioration is suggested. © 2010 Wiley Periodicals, Inc. Naval Research Logistics, 2010  相似文献   

18.
When solving location problems in practice it is quite common to aggregate demand points into centroids. Solving a location problem with aggregated demand data is computationally easier, but the aggregation process introduces error. We develop theory and algorithms for certain types of centroid aggregations for rectilinear 1‐median problems. The objective is to construct an aggregation that minimizes the maximum aggregation error. We focus on row‐column aggregations, and make use of aggregation results for 1‐median problems on the line to do aggregation for 1‐median problems in the plane. The aggregations developed for the 1‐median problem are then used to construct approximate n‐median problems. We test the theory computationally on n‐median problems (n ≥ 1) using both randomly generated, as well as real, data. Every error measure we consider can be well approximated by some power function in the number of aggregate demand points. Each such function exhibits decreasing returns to scale. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 614–637, 2003.  相似文献   

19.
This paper discusses the properties of positive, integer valued compound Poisson processes and compares two members of the family: the geometric Poisson (stuttering Poisson) and the logarithmic Poisson. It is shown that the geometric Poisson process is particularly convenient when the analyst is interested in a simple model for the time between events, as in simulation. On the other hand, the logarithmic Poisson process is more convenient in analytic models in which the state probabilities (probabilities for the number of events in a specified time period) are required. These state probabilities have a negative binomial distribution. The state probabilities of the geometric Poisson process, known as the geometric Poisson distribution, are tabled for 160 sets of parameter values. The values of mean demand range from 0.10 to 10; those for variance to mean ratio from 1.5 to 7. It is observed that the geometric Poisson density is bimodal.  相似文献   

20.
An equity model between groups of demand points is proposed. The set of demand points is divided into two or more groups. For example, rich and poor neighborhoods and urban and rural neighborhoods. We wish to provide equal service to the different groups by minimizing the deviation from equality among groups. The distance to the closest facility is a measure of the quality of service. Once the facilities are located, each demand point has a service distance. The objective function, to be minimized, is the sum of squares of differences between all pairs of service distances between demand points in different groups. The problem is analyzed and solution techniques are proposed for the location of a single facility in the plane. Computational experiments for problems with up to 10,000 demand points and rectilinear, Euclidean, or general ?p distances illustrate the efficiency of the proposed algorithm. © 2011 Wiley Periodicals, Inc. Naval Research Logistics, 2011  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号