首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 14 毫秒
1.
纯方位目标运动分析(BOTMA)仅利用方位信息实现对目标状态参数的估计,是一种有效的无源被动定位跟踪方法。纯方位系统中的可观测性条件、目标跟踪与估计策略、观测器最优机动轨迹构成了BOTMA的核心研究内容。可观测性问题是BOTMA首先必须解决的关键问题,可观测性条件是后续目标定位与跟踪的前提和基础。介绍了纯方位系统中可观测性的基本概念,从几何方法、线性与非线性方法、数值分析方法等角度,对BOTMA的可观测性研究成果进行了系统的总结和评述,最后对这一领域的研究提出了新的展望。  相似文献   

2.
多站纯方位定位系统的可观测性条件   总被引:4,自引:1,他引:3  
对多运动站纯方位目标定位系统的可观测性问题进行了研究.通过运动等效,将多运动站纯方位定位系统等效成一个特殊的单运动站定位问题.利用拟线性估计方程,导出了系统不完全可观测的一些条件,分析中还发现了系统不完全可观测的新情形.  相似文献   

3.
本文从非线性系统的可观性出发,研究纯方位目标跟踪系统的可观测性和滤波算法。给出了纯方位系统适应于一般目标运动假定的更完善的可观测性判据,并指出了该系统的不可观测本质。在对一般非线性观测过程的可观测性分离的概念和可行性定理建立之后,本文结合辅助变量法,给出了纯方位目标跟踪的一种算法——可观测性分离的辅助变量法。Monte—Carlo仿真表明,它优于以往直角坐标系中的各种纯方位跟踪算法,而且是渐近无偏的。  相似文献   

4.
基于实际背景需求,针对单平台纯方位水面编队目标运动要素解算问题,从可观测性、观测平台机动及解算模型三方面作了探讨.利用线性系统可观测理论,基于伪线性量测方程对编队目标运动要素的可观测性进行了研究,给出了可观测条件.以Fisher信息阵行列式为性能指标,探讨了观测平台最优机动的理论轨线和工程轨线形状.给出了3种编队目标运动要素解算模型,并进行了仿真比较分析.研究结论和仿真结果表明:水下单平台基于纯方位解算编队目标运动要素,自身必须作有效机动,可以采用单目标运动要素解算的最佳机动策略;提出的联合解算模型的效果显著好于已有的两种模型.  相似文献   

5.
纯方位目标跟踪是一个典型的非线性问题,伪线性跟踪估计器是理论和工程上解决该问题的一类重要方法。针对纯方位观测模型伪线性化后,系统存在弱可观测性问题,提出了一种时变最优条件数的目标要素解算新方法,理论上给出了一个改善系统可观测性的最优乘数因子。在系统条件数和参数估计的收敛概率两个方面,数值仿真和实验数据验证都表明新方法要优于经典纯方位伪线性化方法。  相似文献   

6.
纯方位角目标运动分析的可观测性研究   总被引:1,自引:0,他引:1  
纯方位角目标运动分析的可观测性是纯方位角观测系统中的一个基本问题.只有解决了系统的可观测性,才能进行有效的目标定位及跟踪.从随机系统的角度分析了纯方位角观测系统的可观测性,引入状态参量的Fisher信息矩阵作为判断系统可观测性的依据,提出了完全不同于判定确定性系统可观测性的随机观测系统可观测性的判定方法.最后给出了一个静止目标纯方位角观测系统的实例,说明了该方法的有效性.  相似文献   

7.
单站纯方位目标跟踪系统可观测性分析   总被引:1,自引:0,他引:1  
针对单站纯方位目标跟踪系统的可观测性,在研究国内外有关状况的基础上,给出了单站纯方位目标运动分析的问题描述,综述了国内外的研究和发展情况,给出了由观测可观测性的一些结论和证明.其中对某些经典的结论给出了简单、明了的证明方法,这些有助于该问题的深入理解和研究.  相似文献   

8.
为解决依据舰载无人机观测数据对目标进行定位跟踪的问题,提出了基于纯角度信息对目标进行目标运动分析的算法。根据目标运动特性,建立算法运动模型,构建等式,对其可观测性进行分析,并且利用最小二乘法,对目标运动要素解算,通过算法分析和算例仿真表明:该算法可通过舰载无人机对目标的角度测量信息,对陆上、海上运动目标进行运动要素求解,精度满足舰载无人机对目标的定位跟踪要求。  相似文献   

9.
纯方位定位中的“Legs”机动方式与系统的可观测性   总被引:1,自引:0,他引:1  
由多个等速直线运动段组成的观察站运动方式,称为“Legs”机动方式,所谓的纯方位系统是可观测的,是指系统在纯方位观察条件下,能唯一地求解出目标的运动参数。讨论了“Legs”机动方式,对纯方位目标定位系统可观测性的影响,建立了该模式下系统可观测的必要条件。  相似文献   

10.
纯方位目标跟踪系统的可观测程度   总被引:6,自引:2,他引:4  
首先建立了纯方位目标跟踪系统的动态模型和一个最小二乘估计器,分析了该系统的完全可观测性。在系统完全可观测的条件下,引入可观测程度这一概念。文中定义了两种描述系统可观测程度的方法。它们都很好地反映了系统可观测程度随跟踪时间的变化过程。研究发现,纯方位目标跟踪系统往往是弱可观测系统,这正是系统跟踪效果不佳的原因所在。然而,文中表明的系统可观测程度同跟踪几何态势关系密切这一事实,又使得从己艇机动入手解决跟踪效果差的问题成为可能,就是通过极大化系统的可观测程度优化己艇的机动策略。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号