首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 312 毫秒
1.
建立了一种利用程序升温气相色谱仪的逸出气体检测(EGD)系统,用于测量液薄膜、固薄膜、纤维,粉末等材料中微量的热挥发及(或)挥发性热分解组分。这类微量用常规热分析法(如热重法(TG)、微商热重(DTG)及差热分析(DTA)等)一般难以测出。用该法测量的GuSO_4·5H_2O粉末样品、端羟基聚丁二烯(HTPB)及邻苯二甲酸二丁酯(DBP)薄膜样品逸出气的EGD数据同TG-DTG-DTA联用技术所得结果作了比较。还用该系统检测了硼酸(槽浴)阳极氧化铝箔、碳纤维、碳化硅纤维的逸出气体。阐述了本法的优点及具体步骤。  相似文献   

2.
H2O2/HTPB固液混合发动机点火试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用H2O2催化分解原理,设计了烃类燃料在催化分解的90%H2O2中能燃烧的点火器,然后采用该点火器进行H2O2/HTPB固液混合发动机点火试验研究.试验结果表明,该点火器能够成功启动H2O2/HTPB固液混合发动机,且当混合比偏离最佳混合比后,发动机的燃烧效率降低.  相似文献   

3.
利用热分析技术对受油类污染的棉纤维的热分解特性和热分解动力学进行了研究。经过不同机制热分解模型的拟合,提出了受实验用油污染棉纤维的热分解动力学机理,并建立了其热分解动力学方程。结果表明:受油类污染的样品比未受污染的热分解起始温度明显降低,其热分解过程主要分为两个阶段,第一个阶段的热分解动力学机理为一维扩散控制,第二个阶段的热分解动力学机制相对复杂,可能为相边界反应,圆柱形或是球形对称机理。  相似文献   

4.
聚磷酸铵热分解动力学模型研究   总被引:1,自引:0,他引:1  
用热重法(TG)对聚磷酸铵的热分解进行了分析。结果表明,聚磷酸铵受热分三步分解,其热分解机理均为三维扩散分解,并用微分法中的Achar法对热分解的数据进行处理,用多种机理方程进行了拟合,得到了聚磷酸铵第一热分解阶段的热分解动力学参数及分解动力学模型。  相似文献   

5.
本文就挤压流变计的设计进行了说明,并用该仪器测定了HTPB推进剂药浆的流变特性。  相似文献   

6.
本文研究了HTPB/AP推进剂中AP粒度对推进剂老化性能的影响。实验是在90℃的空气中进行的。老化性能以推进剂的拉伸性能、邵氏硬度,失重%和燃烧速度等参数为判据,并以DSC图谱作参考。实验结果表明:HTPB/AP推进剂中AP粒度的减小,有助于推进剂贮存老化性能的提高。各种粒度AP的DSC图谱,也进一步证实了这一结论。  相似文献   

7.
SCB型钢结构防火涂料热分解动力学模型研究   总被引:1,自引:0,他引:1  
用热重法(TG)对SCB型钢结构防火涂料的热分解过程进行了分析,并用微分法中的Achar法对热分解的数据进行处理,用多种机理方程进行了拟合,发现SCB型防火涂料的热分解可分为四个阶段:第一阶段热分解属于随机核化,第二、第三、第四阶段热分解属于三维扩散,球形对称机理。  相似文献   

8.
本文研究了某些化合物对端羟基聚丁二烯(HTPB)复合固体推进剂燃速压力指数的影响。实验发现,硫化镉是一种较好的降低HTPB复合固体推进剂燃速压力指数的添加剂。当硫化镉与其它燃速催化剂混合使用时,在提高推进剂燃速的同时,仍能达到较大幅度降低燃速压力指数的目的。最后应用差热分析方法对硫化镉的作用机理作了初步的探讨。  相似文献   

9.
本文报道了关于降低固体火箭发动机喷气羽烟对微波、激光制导信号的干扰和衰减的研究成果——一种少烟HTPB推进剂。它具有低压点火性能良好,燃烧稳定,能提高排气羽烟对微波和激光透过率三倍以上。  相似文献   

10.
以五氧化二磷/季戊四醇/三聚氰胺为原料合成了聚合型膨胀阻燃剂,并制备了膨胀型阻燃聚丙烯。比较和讨论了热分解动力学方法,通过测定体积流速评价了流变性,用热重分析方法研究了膨胀型阻燃聚丙烯的热分解特点。  相似文献   

11.
《防务技术》2020,16(2):439-446
In order to study the cross-linking density and aging constitutive relationship of HTPB coating during storage, the thermal accelerated aging tests at 0%, 3%, 6% and 9% prestrains were carried out. The cross-linking density of HTPB coating at different aging stages were tested using low-field 1H NMR and the variation of cross-linking density was analyzed. The aging model of cross-linking density considering the chemical aging and the physical stretching factors was established. The uniaxial tensile tests were carried out on HTPB coating at different aging stages and the cross-linking density was introduced into Ogden hyperelastic constitutive model as a characterization parameter of correction coefficient. Combined with uniaxial tensile test results, a prestrain aging constitutive model of HTPB coating was established. The results show that the cross-linking density of HTPB coating increases rapidly at first and then slowly with the increase of thermal accelerated aging time without prestrain. Under prestrain conditions, the cross-linking density of HTPB coating decreases at the early stage, and increases rapidly at first and then slowly at the middle and late stages of thermal accelerated aging. The correlation coefficients of aging model of cross-linking density and aging constitutive model with test results are R > 0.9500 and R > 0.9900 respectively, which can be used to accurately describe the cross-linking density and aging constitutive relationship of HTPB coating under prestrain accelerated thermal aging conditions.  相似文献   

12.
In order to accurately describe the transverse relaxation characteristic and stress relaxation modulus of HTPB coating during pre-strain thermal aging process, a one month thermal aging test was carried out at 70 C with pre-strain of 0%, 3%, 6% and 9%, respectively. The low-field 1H NMR and stress relaxation modulus tests were carried out for HTPB coating at different aging stages. The stress relaxation model considering the molecular chains was proposed according to the changes of crosslinking chain and dangling chain of HTPB coating during pre-strain aging. The results showed that with the increase of aging time, the decay rate of transverse relaxation curve became faster, the transverse relaxation time decreased, the value of combined parameter qMrl increased, the proportion of crosslinking chain decreased, while the proportion of dangling chain increased. Moreover, the stress relaxation modulus increased, the crosslinking network structure of HTPB coating became denser and the degree of cross-linking increased. At the initial aging stage, the pre-strain will destroy the crosslinking network structure of HTPB coating to a certain extent. With the increase of aging time, the effect of pre-strain will gradually weaken and the influence of aging on materials will gradually increase. The correlations between the stress relaxation model considering the molecular chains and the test results were more than 0.9950, which can accurately describe the stress relaxation modulus of HTPB coating during the pre-strain thermal aging process.  相似文献   

13.
In order to predict the storage life of a certain type of HTPB (hydroyl-terminated polybutadiene) coating at 25 C and analyze the influence of pre-strain on the storage life, the accelerated aging tests of HTPB coating at 40 C, 50 C, 60 C, 70 C with the pre-strain of 0%, 3%, 6%, 9%, respectively were carried out. The variation regularity of the change of crosslinking density was analyzed and the aging model of HTPB coating under pre-strained thermally-accelerated aging was proposed. The storage life of HTPB coating at 25 C was estimated by using the Berthelot equation as the end point of the aging life with a 30% decrease in maximum elongation. The results showed that the change of crosslinking density of HTPB coating increased with the increase of aging temperature and aging time, and decreased with the in-crease of pre-strain. Under 0% pre-strain, the relationship between the change of crosslinking density of HTPB coating and the aging time can be described by the logarithmic model with the confidence probability greater than 99%.The stress relaxation phenomenon existed under 3%, 6% and 9% pre-strained aging. The aging model considering chemical aging and pre-strain was established with the confidence probability greater than 90%. The storage life of HTPB coating was 15.2935 years at 25 C under 0% pre-strain, which was reduced by 13.9007%, 75.6949% and 89.7859% under 3%, 6% and 9% pre-strain, respectively. The existence of pre-strain has a serious impact on the storage life of HTPB coating, therefore, the pre-strain should be avoided as much as possible during the actual storage.  相似文献   

14.
As a main oxidizer in solid composite propellants, ammonium perchlorate (AP) plays an important role because its thermal decomposition behavior has a direct influence on the characteristic of solid com-posite propellants. To improve the performance of solid composite propellant, it is necessary to take measures to modify the thermal decomposition behavior of AP. In recent years, transition metal oxides and carbon-supported transition metal oxides have drawn considerable attention due to their extraor-dinary catalytic activity. In this review, we highlight strategies to enhance the thermal decomposition of AP by tuning morphology, varying the types of metal ion, and coupling with carbon analogue. The enhanced catalytic performance can be ascribed to synergistic effect, increased surface area, more exposed active sites, and accelerated electron transportation and so on. The mechanism of AP decom-position mixed with catalyst has also been briefly summarized. Finally, a conclusive outlook and possible research directions are suggested to address challenges such as lacking practical application in actual formulation of solid composite propellant and batch manufacturing.  相似文献   

15.
《防务技术》2022,18(10):1886-1894
Improving the thermal decomposition performance of hexanitrohexaazaisowurtzitane (CL-20) by appropriate methods is helpful to promote the combustion performance of CL-20-based solid propellants. In this study, we synthesized a sandwich structure of CL-20 and nanoporous carbon scaffolds film (NCS) and emphatically studied the thermal decomposition performance of the composite structure. Thermogravimetric analysis and differential scanning calorimetry were used to measure the thermal decomposition process of the composite structure. The kinetic parameters of thermal decomposition were calculated by the thermal dynamic analysis software AKTS. These results showed that the thermal decomposition performance of the sandwich structure of CL-20 and NCS was better than CL-20. Among the tested samples, NCS with a pore size of 15 nm had the best catalytic activity for the thermal decomposition of CL-20. Moreover, the thermal decomposition curve of the composite structure at the heating rate of 1 K/min was deconvoluted by mathematical method to study the thermal decomposition process. And a possible catalytic mechanism was proposed. The excellent thermal decomposition performance is due to the sandwich structure enhances the interface reaction of CL-20 and NCS. This work may promote the extensive use of CL-20 in the field of solid rocket propellant.  相似文献   

16.
《防务技术》2019,15(6):868-874
Ammonium perchlorate (APC) is the most common oxidizer in use for solid rocket propulsion systems. However its initial thermal decomposition is an endothermic process that requires 102.5 J·g−1. This manner involves high activation energy and could render high burning rate regime. This study reports on the sustainable fabrication of CuO nanoparticles as a novel catalyzing agent for APC oxidizer. Colloidal CuO nanoparticles with consistent product quality were fabricated by using hydrothermal processing. TEM micrographs demonstrated mono-dispersed particles of 15 nm particle size. XRD diffractogram demonstrated highly crystalline material. The synthesized colloidal CuO particles were effectively coated with APC particles via co-precipitation by using fast-crash solvent–antisolvent technique. The impact of copper oxide particles on APC thermal behavior has been investigated using DSC and TGA techniques. APC demonstrated an initial endothermic decomposition stage at 242 °C with subsequent two exothermic decomposition stages at 297.8 °C and 452.8 °C respectively. At 1 wt%, copper oxide offered decrease in initial endothermic decomposition stage by 30%. The main outcome of this study is that the two main exothermic decomposition peaks were merged into one single peak with an increase in total heat release by 53%. These novel features can inherit copper oxide particles unique catalyzing ability for advanced highly energetic systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号