首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we illustrate a real‐time approximate dynamic programming (RTADP) method for solving multistage capacity decision problems in a stochastic manufacturing environment, by using an exemplary three‐stage manufacturing system with recycle. The system is a moderate size queuing network, which experiences stochastic variations in demand and product yield. The dynamic capacity decision problem is formulated as a Markov decision process (MDP). The proposed RTADP method starts with a set of heuristics and learns a superior quality solution by interacting with the stochastic system via simulation. The curse‐of‐dimensionality associated with DP methods is alleviated by the adoption of several notions including “evolving set of relevant states,” for which the value function table is built and updated, “adaptive action set” for keeping track of attractive action candidates, and “nonparametric k nearest neighbor averager” for value function approximation. The performance of the learned solution is evaluated against (1) an “ideal” solution derived using a mixed integer programming (MIP) formulation, which assumes full knowledge of future realized values of the stochastic variables (2) a myopic heuristic solution, and (3) a sample path based rolling horizon MIP solution. The policy learned through the RTADP method turned out to be superior to polices of 2 and 3. © 2010 Wiley Periodicals, Inc. Naval Research Logistics 2010  相似文献   

2.
We present the green telecommunication network planning problem with switchable base stations, where the location and configuration of the base stations are optimized, while taking into account uncertainty and variability of demand. The problem is formulated as a two‐stage stochastic program under demand uncertainty with integers in both stages. Since solving the presented problem is computationally challenging, we develop the corresponding Dantzig‐Wolfe reformulation and propose a solution approach based on column generation. Comprehensive computational results are provided for instances of varying characteristics. The results show that the joint location and dynamic switching of base stations leads to significant savings in terms of energy cost. Up to 30% reduction in power consumption cost is achieved while still serving all users. In certain cases, allowing dynamic configurations leads to more installed base stations and higher user coverage, while having lower total energy consumption. The Dantzig‐Wolfe reformulation provides solutions with a tight LP‐gap eliminating the need for a full branch‐and‐price scheme. Furthermore, the proposed column generation solution approach is computationally efficient and outperforms CPLEX on the majority of the tested instances. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 351–366, 2016  相似文献   

3.
This paper studies a scheduling problem arising in a beef distribution system where pallets of various types of beef products in the warehouse are first depalletized and then individual cases are loaded via conveyors to the trucks which deliver beef products to various customers. Given each customer's demand for each type of beef, the problem is to find a depalletizing and truck loading schedule that fills all the demands at a minimum total cost. We first show that the general problem where there are multiple trucks and each truck covers multiple customers is strongly NP‐hard. Then we propose polynomial‐time algorithms for the case where there are multiple trucks, each covering only one customer, and the case where there is only one truck covering multiple customers. We also develop an optimal dynamic programming algorithm and a heuristic for solving the general problem. By comparing to the optimal solutions generated by the dynamic programming algorithm, the heuristic is shown to be capable of generating near optimal solutions quickly. © 2003 Wiley Periodicals, Inc. Naval Research Logistics, 2003  相似文献   

4.
Information technology (IT) infrastructure relies on a globalized supply chain that is vulnerable to numerous risks from adversarial attacks. It is important to protect IT infrastructure from these dynamic, persistent risks by delaying adversarial exploits. In this paper, we propose max‐min interdiction models for critical infrastructure protection that prioritizes cost‐effective security mitigations to maximally delay adversarial attacks. We consider attacks originating from multiple adversaries, each of which aims to find a “critical path” through the attack surface to complete the corresponding attack as soon as possible. Decision‐makers can deploy mitigations to delay attack exploits, however, mitigation effectiveness is sometimes uncertain. We propose a stochastic model variant to address this uncertainty by incorporating random delay times. The proposed models can be reformulated as a nested max‐max problem using dualization. We propose a Lagrangian heuristic approach that decomposes the max‐max problem into a number of smaller subproblems, and updates upper and lower bounds to the original problem via subgradient optimization. We evaluate the perfect information solution value as an alternative method for updating the upper bound. Computational results demonstrate that the Lagrangian heuristic identifies near‐optimal solutions efficiently, which outperforms a general purpose mixed‐integer programming solver on medium and large instances.  相似文献   

5.
Consider a supplier offering a product to several potential demand sources, each with a unique revenue, size, and probability that it will materialize. Given a long procurement lead time, the supplier must choose the orders to pursue and the total quantity to procure prior to the selling season. We model this as a selective newsvendor problem of maximizing profits where the total (random) demand is given by the set of pursued orders. Given that the dimensionality of a mixed‐integer linear programming formulation of the problem increases exponentially with the number of potential orders, we develop both a tailored exact algorithm based on the L‐shaped method for two‐stage stochastic programming as well as a heuristic method. We also extend our solution approach to account for piecewise‐linear cost and revenue functions as well as a multiperiod setting. Extensive experimentation indicates that our exact approach rapidly finds optimal solutions with three times as many orders as a state‐of‐the‐art commercial solver. In addition, our heuristic approach provides average gaps of less than 1% for the largest problems that can be solved exactly. Observing that the gaps decrease as problem size grows, we expect the heuristic approach to work well for large problem instances. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 2008  相似文献   

6.
This paper addresses optimal power allocation in a wireless communication network under uncertainty. The paper introduces a framework for optimal transmit power allocation in a wireless network where both the useful and interference coefficients are random. The new approach to power control is based on a stochastic programming formulation with probabilistic SIR constraints. This allows to state the power allocation problem as a convex optimization problem assuming normally or log‐normally distributed communication link coefficients. Numerical examples illustrate the performance of the optimal stochastic power allocation. A distributed algorithm for the decentralized solution of the stochastic power allocation problem is discussed. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2005  相似文献   

7.
We consider the multitasking scheduling problem on unrelated parallel machines to minimize the total weighted completion time. In this problem, each machine processes a set of jobs, while the processing of a selected job on a machine may be interrupted by other available jobs scheduled on the same machine but unfinished. To solve this problem, we propose an exact branch‐and‐price algorithm, where the master problem at each search node is solved by a novel column generation scheme, called in‐out column generation, to maintain the stability of the dual variables. We use a greedy heuristic to obtain a set of initial columns to start the in‐out column generation, and a hybrid strategy combining a genetic algorithm and an exact dynamic programming algorithm to solve the pricing subproblems approximately and exactly, respectively. Using randomly generated data, we conduct numerical studies to evaluate the performance of the proposed solution approach. We also examine the effects of multitasking on the scheduling outcomes, with which the decision maker can justify making investments to adopt or avoid multitasking.  相似文献   

8.
We present a stochastic programming approach to capacity planning under demand uncertainty in semiconductor manufacturing. Given multiple demand scenarios together with associated probabilities, our aim is to identify a set of tools that is a good compromise for all these scenarios. More precisely, we formulate a mixed‐integer program in which expected value of the unmet demand is minimized subject to capacity and budget constraints. This is a difficult two‐stage stochastic mixed‐integer program which cannot be solved to optimality in a reasonable amount of time. We instead propose a heuristic that can produce near‐optimal solutions. Our heuristic strengthens the linear programming relaxation of the formulation with cutting planes and performs limited enumeration. Analyses of the results in some real‐life situations are also presented. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

9.
This paper develops a new model for allocating demand from retailers (or customers) to a set of production/storage facilities. A producer manufactures a product in multiple production facilities, and faces demand from a set of retailers. The objective is to decide which of the production facilities should satisfy each retailer's demand, in order minimize total production, inventory holding, and assignment costs (where the latter may include, for instance, variable production costs and transportation costs). Demand occurs continuously in time at a deterministic rate at each retailer, while each production facility faces fixed‐charge production costs and linear holding costs. We first consider an uncapacitated model, which we generalize to allow for production or storage capacities. We then explore situations with capacity expansion opportunities. Our solution approach employs a column generation procedure, as well as greedy and local improvement heuristic approaches. A broad class of randomly generated test problems demonstrates that these heuristics find high quality solutions for this large‐scale cross‐facility planning problem using a modest amount of computation time. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

10.
The fixed charge problem is a nonlinear programming problem of practical interest in business and industry. Yet, until now no computationally feasible exact method of solution for large problems had been developed. In this paper an exact algorithm is presented which is computationally feasible for large problems. The algorithm is based upon a branch and bound approach, with the additional feature that the amount of computer storage required remains constant throughout (for a problem of any given size). Also presented are three suboptimal heuristic algorithms which are of interest because, although they do not guarantee that the true optimal solution will be found, they usually yield very good solutions and are extremely rapid techniques. Computational results are described for several of the heuristic methods and for the branch and bound algorithm.  相似文献   

11.
This article provides an efficient heuristic based on decomposition for the twin robots scheduling problem (TRSP). TRSP concerns two moving robots executing storage and retrieval requests in parallel along a shared pathway. The depots are located at both ends of the line and a dedicated robot is assigned to each of them. While moving goods between their respective depots and some storage locations on the line, noncrossing constraints among robots need to be considered. Our heuristic uses a dynamic programming framework to determine the schedule of one robot while keeping the other one's fixed. It finds near‐optimal solutions even for large problem instances with hundreds of jobs in a short time span. © 2014 Wiley Periodicals, Inc. 62:16–22, 2015  相似文献   

12.
We study the problem of designing a two‐echelon spare parts inventory system consisting of a central plant and a number of service centers each serving a set of customers with stochastic demand. Processing and storage capacities at both levels of facilities are limited. The manufacturing process is modeled as a queuing system at the plant. The goal is to optimize the base‐stock levels at both echelons, the location of service centers, and the allocation of customers to centers simultaneously, subject to service constraints. A mixed integer nonlinear programming model (MINLP) is formulated to minimize the total expected cost of the system. The problem is NP‐hard and a Lagrangian heuristic is proposed. We present computational results and discuss the trade‐off between cost and service. © 2009 Wiley Periodicals, Inc. Naval Research Logistics 2009  相似文献   

13.
The container relocation problem (CRP) is concerned with emptying a single yard‐bay which contains J containers each following a given pickup order so as to minimize the total number of relocations made during their retrieval process. The CRP can be modeled as a binary integer programming (IP) problem and is known to be NP‐hard. In this work, we focus on an extension of the CRP to the case where containers are both received and retrieved from a single yard‐bay, and call it the dynamic container relocation problem. The arrival (departure) sequences of containers to (from) the yard‐bay is assumed to be known a priori. A binary IP formulation is presented for the problem. Then, we propose three types of heuristic methods: index based heuristics, heuristics using the binary IP formulation, and a beam search heuristic. Computational experiments are performed on an extensive set of randomly generated test instances. Our results show that beam search heuristic is very efficient and performs better than the other heuristic methods.Copyright © 2014 Wiley Periodicals, Inc. Naval Research Logistics 61: 101–118, 2014  相似文献   

14.
In this paper we propose some non‐greedy heuristics and develop an Augmented‐Neural‐Network (AugNN) formulation for solving the classical open‐shop scheduling problem (OSSP). AugNN is a neural network based meta‐heuristic approach that allows integration of domain‐specific knowledge. The OSSP is framed as a neural network with multiple layers of jobs and machines. Input, output and activation functions are designed to enforce the problem constraints and embed known heuristics to generate a good feasible solution fast. Suitable learning strategies are applied to obtain better neighborhood solutions iteratively. The new heuristics and the AugNN formulation are tested on several benchmark problem instances in the literature and on some new problem instances generated in this study. The results are very competitive with other meta‐heuristic approaches, both in terms of solution quality and computational times. © 2005 Wiley Periodicals, Inc. Naval Research Logistics, 2005.  相似文献   

15.
Consider a sequential dynamic pricing model where a seller sells a given stock to a random number of customers. Arriving one at a time, each customer will purchase one item if the product price is lower than her personal reservation price. The seller's objective is to post a potentially different price for each customer in order to maximize the expected total revenue. We formulate the seller's problem as a stochastic dynamic programming model, and develop an algorithm to compute the optimal policy. We then apply the results from this sequential dynamic pricing model to the case where customers arrive according to a continuous‐time point process. In particular, we derive tight bounds for the optimal expected revenue, and develop an asymptotically optimal heuristic policy. © 2004 Wiley Periodicals, Inc. Naval Research Logistics, 2004.  相似文献   

16.
We consider a reliable network design problem under uncertain edge failures. Our goal is to select a minimum‐cost subset of edges in the network to connect multiple terminals together with high probability. This problem can be seen as a stochastic variant of the Steiner tree problem. We propose two scenario‐based Steiner cut formulations, study the strength of the proposed valid inequalities, and develop a branch‐and‐cut solution method. We also propose an LP‐based separation for the scenario‐based directed Steiner cut inequalities using Benders feasibility cuts, leveraging the success of the directed Steiner cuts for the deterministic Steiner tree problem. In our computational study, we test our branch‐and‐cut method on instances adapted from graphs in SteinLib Testdata Library with up to 100 nodes, 200 edges, and 17 terminals. The performance of our branch‐and‐cut method demonstrates the strength of the scenario‐based formulations and the benefit from adding the additional valid inequalities that we propose. © 2015 Wiley Periodicals, Inc. Naval Research Logistics 62: 321–334, 2015  相似文献   

17.
This article deals with supply chain systems in which lateral transshipments are allowed. For a system with two retailers facing stochastic demand, we relax the assumption of negligible fixed transshipment costs, thus, extending existing results for the single‐item case and introducing a new model with multiple items. The goal is to determine optimal transshipment and replenishment policies, such that the total centralized expected profit of both retailers is maximized. For the single‐item problem with fixed transshipment costs, we develop optimality conditions, analyze the expected profit function, and identify the optimal solution. We extend our analysis to multiple items with joint fixed transshipment costs, a problem that has not been investigated previously in the literature, and show how the optimality conditions may be extended for any number of items. Due to the complexity involved in solving these conditions, we suggest a simple heuristic based on the single‐item results. Finally, we conduct a numerical study that provides managerial insights on the solutions obtained in various settings and demonstrates that the suggested heuristic performs very well. © 2014 Wiley Periodicals, Inc. Naval Research Logistics, 61: 637–664, 2014  相似文献   

18.
This paper examines the discrete equal‐capacity p‐median problem that seeks to locate p new facilities (medians) on a network, each having a given uniform capacity, in order to minimize the sum of distribution costs while satisfying the demand on the network. Such problems arise, for example, in local access and transport area telecommunication network design problems where any number of a set of p facility units can be constructed at the specified candidate sites (hence, the net capacity is an integer multiple of a given unit capacity). We develop various valid inequalities, a separation routine for generating cutting planes that are specific members of such inequalities, as well as an enhanced reformulation that constructs a partial convex hull representation that subsumes an entire class of valid inequalities via its linear programming relaxation. We also propose suitable heuristic schemes for this problem, based on sequentially rounding the continuous relaxation solutions obtained for the various equivalent formulations of the problem. Extensive computational results are provided to demonstrate the effectiveness of the proposed valid inequalities, enhanced formulations, and heuristic schemes. The results indicate that the proposed schemes for tightening the underlying relaxations play a significant role in enhancing the performance of both exact and heuristic solution methods for this class of problems. © 2000 John & Sons, Inc. Naval Research Logistics 47: 166–183, 2000.  相似文献   

19.
This article is a sequel to a recent article that appeared in this journal, “An extensible modeling framework for dynamic reassignment and rerouting in cooperative airborne operations” [ 17 ], in which an integer programming formulation to the problem of rescheduling in‐flight assets due to changes in battlespace conditions was presented. The purpose of this article is to present an improved branch‐and‐bound procedure to solve the dynamic resource management problem in a timely fashion, as in‐flight assets must be quickly re‐tasked to respond to the changing environment. To facilitate the rapid generation of attractive updated mission plans, this procedure uses a technique for reducing the solution space, supports branching on multiple decision variables simultaneously, incorporates additional valid cuts to strengthen the minimal network constraints of the original mathematical model, and includes improved objective function bounds. An extensive numerical analysis indicates that the proposed approach significantly outperforms traditional branch‐and‐bound methodologies and is capable of providing improved feasible solutions in a limited time. Although inspired by the dynamic resource management problem in particular, this approach promises to be an effective tool for solving other general types of vehicle routing problems. © 2013 Wiley Periodicals, Inc. Naval Research Logistics, 2013  相似文献   

20.
The dynamics of the environment in which supply chains evolve requires that companies frequently redesign their logistics distribution networks. In this paper we address a multiperiod single‐sourcing problem that can be used as a strategic tool for evaluating the costs of logistics network designs in a dynamic environment. The distribution networks that we consider consist of a set of production and storage facilities, and a set of customers who do not hold inventories. The facilities face production capacities, and each customer's demand needs to be delivered by a single facility in each period. We deal with the assignment of customers to facilities, as well as the location, timing, and size of inventories. In addition, to mitigate start and end‐of‐study effects, we view the planning period as a typical future one, which will repeat itself. This leads to a cyclic model, in which starting and ending inventories are equal. Based on an assignment formulation of the problem, we propose a greedy heuristic, and prove that this greedy heuristic is asymptotically feasible and optimal in a probabilistic sense. We illustrate the behavior of the greedy heuristic, as well as some improvements where the greedy heuristic is used as the starting point of a local interchange procedure, on a set of randomly generated test problems. © 2003 Wiley Periodicals, Inc. Naval Research Logistics 50: 412–437, 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号